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Chapter 1

Introduction

It was indeed a scienti�c revolution when Darwin proposed his theory of evolu-

tion. Today, the branching tree of life, based on simple principles as natural selection,

adaptation and mutations, has become an inevitable acknowledgement for the nat-

ural sciences. The old vitalistic views for the creation of man have been replaced by

the somewhat o�ending theory of heredity and genetics. But the darwinian theory is

missing something. Darwin is mainly concerned with organisms which already exist,

and not how they are created from their initially inorganic surroundings. It might

be right that the most complex organisms which exist today are developed from

very simple organisms long time ago, but how are these simple organisms created

in the �rst place, and how is it possible to create such complex structures at all, if

not because of some (transcendent) creational power? Then, the normal scienti�c

approach conjectures: There must be some other mechanisms responsable for the

emergence of spontaneous order within the system itself.

It is in this sense, this spirit, and with these motivations, the thesis presented

here must be understood. Here we try to introduce the maybe even more o�ending

theory of morphogenesis as an self-organizing phenomenon based on simple physical

principles. The widely accepted founder of this theory was Alan Turing [1] who

also said that his own motivations for the theory was the "defeat of the argument

from design" [2]. The uni�cation of of the theory of self- organizing dissipative

structures and developmental biology, enables us to give some good suggestions for

the occurrence of spatial order in inorganic systems and also for the fundamental

processes of pattern and form in living organisms.

It is important to emphasize the word introduce, because the small masters thesis

presented here can in no way be matched with the broader ideas and conceptual

challenges within the �eld of developmental biology nor nonlinear dynamics. We

will be restricted to a closer investigation of Turing structures, their modelling, their

qualitative dynamics, parametric dependencies, and the connected pattern selection

problems, all within the necessary mathematical framework.
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4 CHAPTER 1. INTRODUCTION

From a biologist point of view, it is not enough to account for the spontaneous

emergence of patterns in cells. There are some other concepts needed for the ef-

fectuation of di�erential processes in the cell. These concepts are mainly the idea

of positional information and of prepatterns which can leed to spatially ordered ar-

rangements in the cell. The Turing models are widely used to explain biological

morphogenesis, cytokinesis and cell di�erentiation [3], [4]. The emergence of a con-

centration gradient of a chemical can be used as positional information for activation

of speci�c genes in a cell, or as morphogenetic gradients for embryonic organization.

In this context the word 'morphogen' is used for such a chemical because it e�ects

morphogenesis. For a further discussion of the biological interpretations of Turing

structures, the reader is referred to for instance [5, 6, 7, 8, 9].

From a chemist or physicist point of view, the theory of Turing structures is

only one among many pattern forming mechanisms [11, 10], and this might give a

clue to the fact that natural phenomena are highly complex with many competing

mechanisms and principles. In this way the formulation and understanding of even

only a very small part of this whole, requires enormous simpli�cation and reductions,

which again gives natural limitations for the interpretational power of our approach.

This thesis is mainly concerned with the modelling of Turing structures, and it

is therefore important to think about the necessary requirement towards the model.

Nature answers in very di�erent ways, depending on the question we pose. In this

sense, the modelling procedure is not objective but involves a series of decisions

with respect to system de�nition, level of aggregation and evaluation of con
icting

experimental data. The model is not true or false but useful to the extent that it

helps further our understanding. Some of the principal requirements to our model

are: i) that it represents a consistent hypothesis, ii) reproduces typical behaviour

and, iii) is reasonable in the limits [12].

Therefore, one should not be surprised, when we make models of models of

models in order to understand some speci�c phenomena (this is actually done in

the 8'th chapter). The model is a generalization of existing experimental results,

and it represents a strong simpli�cation of the biological relations. Therefore, the

model cannot be expected to reproduce speci�c data very accurately. Rather, it

should reproduce general behaviour characteristics such as stability, amplitudes,

phase relations and waveforms. And if it is a good model, it then should be able to

predict system behaviour under conditions never previously experienced.

All this are rather general statements which regrettably only are captured very

poorly in this thesis. Instead, we try, in the �rst three chapters, to give a general

introduction of the now canonized theory of Turing, and in the last three chapters

we present some new developments in the �eld of Turing structures. More explicit,
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chapter 2 deals with the necessary chemical and biochemical background for the

further formulation of our models. Chapter 3 introduces very shortly the necessary

mathematical tools for the later analysis of the reaction-di�usion models. Chapter

4 goes through the Turing mechanism more explicitely, and some of the important

results and equations are derived.

First in chapter 5 we start to look more closely on the subject with respect to

the initial emergence of the spatial structures, exempli�ed by two di�erent models.

Chapter 6 introduces some new results for highly nonlinear systems as they are

found in enzyme regulating processes.

Chapter 7 turns the subject to bistable chemical systems, where some new

secondary Turing bifurcations are presented. Finally, chapter 8 goes, by an explicit

example, through the history of a chemical reaction which recently has been shown to

exhibit spatial structures, and the following modelling of these observed phenomena

by a sequential process of simpli�cations, in order to capture the essence of the

mechanisms responsible for the experimental obtained patterns.
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Chapter 2

Reaction Kinetics

2.1 General Terminology

Normally many elementary reaction steps are needed to de�ne a chemical or

biochemical reaction. To describe the total dynamics of the net reaction, that is the

time development of the species involved in the reaction, one has to build a realistic

mechanism of elementary reactions, which seems plausible for the process under

consideration. This �rst model still might be too complicated for our available tools

for mathematical analysis, and then one has to �nd a simpler "model of the model"

in order to reveal the qualitative features involved in the dynamics. This is always

the �rst step in the understanding of complex chemical and biochemical behaviour,

and we �nd that they mirror a large number of real reactions which again is helpful

and essential when constructing models for more speci�c situations.

When we try to formulate chemical or biochemical elementary reactions within

a mathematical framework, we express the stoichiometry between reactants and

products by a balanced reaction equation:

aA+ bB + :::

k

1

�*

)�

k

�1

:::+ xX + yY (2.1)

where a,b,x and y are the stoichiometric coe�cients for the species A,B,X and Y.

The arrows indicate the direction of an elementary reaction, and the k's are constant

parameters associated with the rates of reaction de�ned below.

The time development of the extent of reaction is the rate of conversion which

for a general rate equation is de�ned as:

d�

dt

= �

1

a

dn

A

dt

= �

1

b

dn

B

dt

=

1

x

dn

X

dt

=

1

y

dn

Y

dt

(2.2)

where n

A

is the amount of substance of species A in units of moles. When reac-

tion takes place within a constant volume, it is possible to rewrite this in terms of
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8 CHAPTER 2. REACTION KINETICS

concentrations and reaction rates v:

v =

1

V

d�

dt

= �

1

aV

dn

a

dt

= �

1

a

d [A]

dt

(2.3)

Here V is the volume of the reaction vessel and [ ] denotes concentration.

The Law of Mass Action says that the rate of a elementary reaction is propor-

tional to the product of the concentrations of the reactants. In this way eq.(2.1)

leads to one equation for each reactant an hence a system of reaction equations:

d [A]

dt

= a(k

�1

[X]

x

[Y ]

y

� k

1

[A]

a

[B]

b

)

: (2.4)

d [Y ]

dt

= y(k

1

[A]

a

[B]

b

� k

�1

[X]

x

[Y ]

y

)

The order with respect to some component is de�ned as the power to which the

concentration of that component is raised in the rate law. For example, the order

of A in eq.(2.5) is a and the order of B is b. However, the overall order is the sum

of the orders of all the components in the reaction. Generally the overall order of

an elementary chemical reaction is within the range of 0� 3 simply because it is not

very probable that too many reacting molecules hit each other at the same time.

But when looking at overall biochemical reactions in living organisms, it is a well

established fact [14] that the net order is highly increased by active gene control

mechanisms resulting in highly nonlinear o�-on control of the dynamics in a cell.

This aspect will be treated in more detail in chapter 6.

Rate laws are experimentally determined, and thus one has to �nd a realistic

mechanism for the subsequent elementary reaction which are compatible with the

empirical rate law.

Thus, in conclusion, the dynamics of a reaction simply is expressed by an ordi-

nary di�erential equation (ODE):

_c = f(c) (2.5)

where c is a vector representing the concentrations of the n dynamical species and

f(c) a vector function containing the n rate law expressions for each species. By

de�ning some additional initial conditions and conservation laws (when dealing with

for instance an enzyme as a catalyst, see the next section) it is normally possible to

reduce the number of dynamic variables, thus making the mathematical formulation

and analysis of the resulting equation system more tractable.
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2.2 Enzyme Kinetics

One of the most basic enzyme reactions is described by the Michaelis-Menten

mechanism. It consists of the following elementary reaction steps:

E + S

k

1

�*

)�

k

�1

ES; ES

k

2

�! P +E (2.6)

where one substrate S reacts with an enzyme E forming a complex ES through a

reversible process, which then by an irreversible reaction is converted into a product

P plus the enzyme. The law of mass action applied to (2.6) results in four reaction

equations:

d[S]

dt

= �k

1

[E][S] + k

�1

[ES];

d[E]

dt

= �k

1

[E][S] + (k

�1

+ k

2

)[ES]

d[ES]

dt

= k

1

[E][S]� (k

�1

+ k

2

)[ES]

d[P ]

dt

= k

2

[ES] (2.7)

We can introduce a conservation law by realizing that the addition of equation

two and three in (2.7) results in a constant concentration of the free enzyme E and

the bounded ES, that is:

d[E]

dt

+

d[ES]

dt

= 0 ) [E] + [ES] = e

0

(2.8)

When substituting this into the rate equation for the complex ES, we obtain:

d[ES]

dt

= k

1

e

0

[S]� [ES](k

1

[S] + k

�1

+ k

2

) (2.9)

Now, what is of biological interest is the overall rate of reaction, that is the

formation of the product P. In experimental situations it is relevant to expect the

enzymatic reaction for the complex ES to be very fast, and in this sense the rate

equation is at a steady state,

d[ES]

dt

� 0, for all observable time scales. This is called

the pseudo-steady state hypothesis.

It is possible to state this hypothesis in a more general way. When confronted

with a large system which results in the dimensionless equations (for the explanation

of non-dimensionalization of reaction equations see Appendix B)
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du

i

dt

= f

i

(u

1

; :::; u

n

); i = 1; 2

�

i

du

i

dt

= f

i

(u

1

; :::; u

n

); i = 3; :::; n (2.10)

0 < �

i

� 1; i = 3; :::; n

we can for all practical purposes assume a pseudo steady state for the equations

i = 3; ::::; n if �

i

is su�cient small.

When dealing with biological processes where enzymes play the role of cata-

lysts, or chemical reactions where some intermediate reaction steps are very fast,

the pseudo-steady state hypothesis gives a good justi�cation for reducing the order

of species considerably, since it is the long time behaviour of mechanisms which

dominates biological development.

In the case of (2.11) the number of dynamical species is reduced to two. This is

a quite general possibility and thus explains the dominant role of two-species models

in the literature when concerned with chemical or biological modelling. They are

minimal models for a qualitative understanding of many di�erent phenomena such

as time oscillations, bifurcations and so on. In chapter 7:3 we have anyway tried to

include a third equation for the general analysis of linear stability in Turing models

in the hope of �nding some unknown dynamic features under speci�c conditions

which seem lost in the two-component description.

Returning to the Michaelis-Menten mechanism, we can obtain the rate equation

for the production of P by inserting in the last equation in (2.7)

v =

d[P ]

dt

= �

d[S]

dt

=

k

2

e

0

[S]

[S] +K

m

(2.11)

where K

m

is the Michaelis-Menten constant K

m

=

k

�1

+k

2

k

1

. The maximum rate

of production is Q = k

2

e

0

and the reaction for k

2

is called the rate limiting step.

Fig. 2.1 shows the typical Michaelis-Menten rate of uptake of product P at di�erent

initial concentrations of substrate S.

2.3 Cooperative Behaviour

When an enzyme has more than one binding site to which a substrate molecule

can be bounded it is described as cooperative. When the binding of one molecule at

one site on the enzyme can a�ect the activity of binding other substrate molecules

on other sites (by for instance a spatial reorganization of the enzyme), we call this

an allosteric e�ect and the enzyme an allosteric enzyme. If the substrate increases

the binding activity it is called an activator; if it decreases an inhibitor. These are
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[S]

v

Q

0

Q/2

Km

Figure 2.1: Schematical plot of the

velocity of appearance of P at di�er-

ent initial concentrations of S. Q =

k

2

e

0

is the maximum rate velocity.

For large S the rate of production

saturates.

very common phenomena in biology and suggest that there are many sophisticated

control mechanisms working at the protein and genetic level. We will now show that

the enzymatic control of the reaction rate can signi�cantly be increased when the

number of binding sites on an enzyme is increased.

In the simplest case we can look at an enzyme with 2 binding sites. Then the

reaction mechanism looks like this:

S + E

k

1

�*

)�

k

�1

ES

k

2

�! E + P

(2.12)

S + ES

k

3

�*

)�

k

�3

ESS

k

4

�! ES + P

When performing the same analysis as before and using the steady state approx-

imation for both the concentrations of the complexes ES and ESS (see [4], p.119),

we obtain the overall reaction rate

v =

e

0

[S](k

2

K

0

m

+ k

4

[S])

K

m

K

0

m

+K

0

m

[S] + [S]

2

(2.13)

Fig. (2.2) shows the di�erence. When k

2

= 0, that is, the substrate S activates

further binding instead of converting into the product plus the free enzyme, the

mechanism shows better "o�-on" control due to the in
ection of the curve. The

Michaelis-Menten form for only one binding site is also shown in comparison.

Substrate inhibition occurs when k

4

= 0, that is, when the substrate S inhibits

the complex ES to dissociate to the free enzyme E and the product P. This is shown

in �g. (2.3).
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[S]

v

0

Michaelis-Menten form

Substrate activation

Figure 2.2: Velocity of appearance of

P at di�erent initial concentrations of

S for one and two binding sites. For

k

2

= 0 we have substrate activation.

[S]

v

0

Michaelis-Menten form

Substrate inhibition

Figure 2.3: For k

4

= 0 we have sub-

strate inhibition. Only for some de�-

nite values of [S] we have a large pro-

duction of the product P.

When there is strong positive cooperation the assumption is that the underlying

reaction velocity is

v =

Q[S]




K

m

+ [S]




(2.14)

where 
 > 1 is the Hill coe�cient. For growing 
 the system gradually approaches

o�-on control of the reaction rate with sensitive dependence on the concentration

of [S]. In genetic control systems or in other enzyme regulation processes in the

cytoplasm, cell membrane, etc. it is common to have large Hill numbers, often

apparently in excess of 8. In respect to facilitating pattern formation the properties

of large Hill constants will be investigated in chapter 6.

2.4 Autocatalysis

One of the most important concepts in the �eld of mathematical biology is the

notion of autocatalysis. This is achieved when a chemical is involved in its own

production by a feedback mechanism. Most commonly autocatalysis is achieved by

a mechanism of double inhibition: Imagine a substrate S which by a normal enzyme

process is converted to a product P. But in the solution there is a inhibitor I which

inhibits this conversion. Anyway, P might be able to combine with I to form an

inert complex IP. So, P inhibits I which inhibits S, and in this way P becomes a

self-activator by breaking down the blockade of its own production.

Only due to some kind of autocatalytic process it is possible to incorporate
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a_c_1 a_c_2

u_s

a

Figure 2.4: Bistable sys-

tem with a hys-

teresis loop. By chang-

ing a through a

c

1

and a

c

2

makes u

s

jump between

the two stable branches.

u_s

aac1 ac2 ac3 ac4

Figure 2.5: A mushroom

has a more complicated

solution. Here there are

two hysteresis loops: one

for a

c

1

and a

c

2

and an-

other for a

c

3

and a

c

4

.

u_s

aac1 ac2

Figure 2.6: An isola has

no hysteresis loop, but

a �nite amplitude per-

turbation of the steady

state u

s

makes it possible

to hit the isolated stable

branch.

one-component nonlinearities in the reaction equations, which enables the system to

exhibit complex time-space behaviour. As an example, the corresponding di�erential

equation of the most simple autocatalytic reaction

A+X

k

1

�*

)�

k

�1

2X (2.15)

is the chemical equivalent to the logistic map which can show time oscillations, period

doubling bifurcations etc.. Spatial pattern formation (when di�usion is included) is

only possible by autocatalysis because of the nonlinearities triggering self-enhancing

growth.

2.5 Multiple Steady State Systems

In a system of linear di�erential equations it is possible only to have one asymp-

totic stable steady state. The introduction of nonlinearity gives rise to more and

more complex solutions as the appearance of multiple steady states. Fig (2.4) shows

a typical bistable system. An appropriate control parameter a in the system can

pass through a bifurcation value a

c

making a transitions from one steady state to

three steady states, due to a saddle-node bifurcation (see next chapter). Linear

stability analysis tells us that the middle branch (dotted line) is unstable while the

other two are linear stable. Then, the transition from the exterior to the interior of

the bistable area through a

c

1

and a

c

2

and back again results in a so-called hysteresis

loop: an abrupt change in stability of the steady state u

s

by changing parameter a.
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It is also possible to have other scenarios like mushrooms (�g. (2.5) or iso-

las, �g.(2.6). These complex solution behaviours are not only mathematical con-

structions, but have been observed in several practical situations including chemical

reactions like the iodate-arsenous acid reaction [13].

In the simpli�ed models we can qualitatively observe many of these phenomena

and thereby obtain a partial understanding of what mechanism is responsible for

a given solution behaviour. So, in modelling biological or chemical processes we

are able to incorporate such known qualitative behaviours as shown in the previous

sections, and thereby unravel the basic underlying mechanisms responsible for many

problems in the �eld of nonlinear dynamics.

Our concern is the modelling of pattern formation in the various kinds of re-

action systems shown here. In the later chapters we will especially investigate the

e�ect of high Hill coe�cients on the control and size regulating properties of the

model; and the possibility of spatial symmetry breaking instabilities occurring on

the unstable branch of bistable systems, enabling the possible formation of other

unknown structures.



Chapter 3

Mathematical Tools

In this chapter we shortly introduce some of the mathematical tools necessary

for the understanding of the more speci�c mathematical problems in the later chap-

ters. The theory of morphogenesis as proposed by Turing is deeply connected to the

broader scienti�c discipline of nonlinear dynamics, and here one mainly is working

with di�erential equations of di�erent classes. The theory of bifurcations and stabil-

ity are also some aspects which needs to be mentioned. All this will be rather short

and cursory, and for more detailed introductions the reader is referred to the books

of Guckenheimer and Holmes [15], Hirsch and Smale [16] or Prigogine and Nicolis

[17].

3.1 Linear Di�erential Equations

A linear di�erential equation is in general written as

dc

dt

= _c = Ac; c 2 R

n

(3.1)

where A is a n x n matrix with constant coe�cients. A solution of (3.1) means a

vector c(c

o

; t) which depends on the initial condition c(0) = c

o

. A general solution

of (3.1) is

c(t) = e

At

c

o

(3.2)

The system (3.1) has n eigenvalues �

1

; ::::; �

n

connected toA, and n eigenvectors

e

1

; ::::; e

n

, which either can be real or complex. More speci�c, a general solution

to (3.1) can then be obtained by a linear superposition of the linear independent

solutions determined by an exponential motion along the real eigenvectors and a

spiralling motion in a plane spanned by the real and imaginary parts of the complex

eigenvectors [16].

The stability properties of the system are then de�ned by the signs of the real

parts of the eigenvalues.

15
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(i) if all real parts are negative, then the solution is

asymptotically stable, and the motion will

converge towards the origin.

(ii) if at least one real part is positive, then the

solution is unstable, and will diverge.

(iii) if the eigenvalues are distinct and if their real

part is zero, then the solution is marginally

stable (not asymptotic stable).

(3.3)

3.2 Nonlinear Di�erential Equations

In the proceeding chapter we saw that the dynamics of a chemical reaction could

be expressed by an ODE. As soon as the rate law for a component exceeds �rst order

kinetics, the vector function f(c) consists of nonlinear terms. In the case of chemical

kinetics we therefore typically need to investigate a �rst order autonomous nonlinear

ODE's de�ned as

_c = f(c); c 2 R

n

(3.4)

where f(c) normally are nonlinear functions of polynomial type.

In the case of nonlinear di�erential equations one has only very general state-

ments for their solution behaviour. The best way to start is the determination of

possible �xed points, which are stationary solutions to (3.4), that is

f(c) = 0 (3.5)

Even this can sometimes be a complicated task, but when done so, we can use

the principle of linearized stability which enables us to characterize the behaviour of

the system near this point. The time evolution of a small perturbation � around a

�xed point c

o

is

� = c� c

o

_

� = _c

= f(c)

' f(c) + J(c� c

o

)

= J� (3.6)
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where a �rst order Taylor expansion of f(c) is used to obtain a linear approximation

of

_

�. The matrix J is equal to

J

ij

=

@f

i

@c

j

(3.7)

and is called the Jacobian matrix. This determines the local behaviour of the solu-

tions around the origin if

� =

�

�

�

�

c

i

c

oi

�

�

�

�

� 1 (3.8)

The enormous advantage of the linearized system is that we know its solution,

given by (3.2), and that this local behaviour turns out also to provide extremely

signi�cant information about the behaviour of the complete nonlinear system, since

the linearized case is tangent to the nonlinear case (Center Manifold Theorem, see

[15] p.13). The stability properties of the linearized behaviour around the �xed

points are analogue to the previous section, and for the cases (i) and (ii) there exists

a topological equivalence between the linearized system (3.6) and the full nonlinear

system (3.4). That is, if J has no eigenvalues with zero real parts, the stability is

determined by the linearization. If any of the eigenvalues has zero real part, then the

stability cannot be determined by the linearization. This critical point (referred to

as marginally stable or Lyapunov stable) is structurally unstable, since its properties

are likely to change qualitatively on the action of an arbitrarily small disturbance.

Necessarily, this is a branching point, or point of bifurcation.

3.3 Bifurcation Theory

We can write our nonlinear ODE in a way that it depends on a parameter �

_c = f(c; �); � 2 R (3.9)

One can say that as long as all eigenvalues �

i

of J satisfy Re �

i

6= 0, the �xed

point c

o

will be a smooth function of � (Implicit Function Theorem). But as soon

as at least one eigenvalue �

i

satis�es Re �

i

= 0 for some value of �

c

, we have the

above mentioned point of bifurcation or singular point. In addition, the exchange

of stability of c

o

requires the criteria

d�

i

d�

�

�

�

�

�

c

6= 0 (3.10)

in order to be e�ectuated qualitatively in the dynamics. It is important to note that

the very occurrence of bifurcations needs nonlinear kinetics, otherwise the equations

would admit an unique solution.

We will concentrate on two important kinds of bifurcations: the saddle-node

bifurcation and the Hopf-bifurcation, since these are two bifurcations which actually

occur in physical systems.
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c

��

c

Im(�)

Re(�)

Figure 3.1: The saddle-node bifurcation. the indicated arrows in the left �gure show

the direction of the trajectories towards the stable branches.

3.3.1 Saddle-node Bifurcation

By use of the Center Manifold Theorem one can reduce the study of this kind

of bifurcation problem to one in which c is only one-dimensional. The saddle-node

bifurcation occurs when the following criteria are ful�lled:

i) f(c

o

; �

c

) = 0

ii) A simple eigenvalue of the Jacobian with no

imaginary part must satisfy�

i

= 0

iii)

d�

i

d�

�

�

�

�

�

c

6= 0

iv)

@f

�

o

@�

�

�

�

�

c

o

6= 0 and

@

2

f

�

o

dc

2

�

�

�

�

�

c

o

6= 0

where the conditions (iv) are transversality conditions ruling out the possibility

of a transcritical- or a pitchfork bifurcation The importance of the saddle-node bi-

furcation stems from the fact that all bifurcations of one-parameter families at an

equilibrium with a zero eigenvalue can be perturbed to a saddle-node bifurcation

(see [15] p.147). It is this property which makes the saddle-node bifurcation a struc-

turally stable bifurcation in contrast to the transcritical- or pitchfork bifurcations

which are structurally unstable. In �g.3.1 the saddle-node bifurcation is shown to-

gether with the conditions for the eigenvalues. There are two new states emerging

at �

c

, of which the lower one is unstable.

For a homogeneous systems involving two variables the eigenvalues are given by
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y

x

�

Im(�)

Re(�)

Figure 3.2: A supercritical Hopf bifurcation.

�

�

=

Tr(J)�

p

Tr(J)

2

� 4Det(J)

2

(3.11)

where TrJ and DetJ is the trace and determinant of the Jacobian matrix evaluated

at the �xed point (steady state). Thus, a saddle-node bifurcation requires that the

determinant of the corresponding Jacobian matrix evaluated at the �xed point is

zero.

3.3.2 Hopf Bifurcation

The Hopf bifurcation occurs when a �xed point exchanges its stability by the

generation of a periodic limit cycle. The necessary criteria are

i) f(c

o

; �

c

) = 0

ii) The Jacobian has a simple pair of pure imaginary eigenvalues

and no other eigenvalues with zero real part

iii)

dRe �

i

d�

�

�

�

�

�

c

6= 0

(3.12)

In a homogeneous system involving two variables, the condition for a Hopf

bifurcation point is given by Tr(J

o

) = 0.

A general classi�cation of the singular points in phase space in a general two

variable systems can be performed, see for instance [4]. For systems with more than

two variables one needs to use the Routh-Hurwitz criteria (see appendix B) or other

related criteria in order to �nd the conditions for stability.
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3.4 Partial Di�erential Equations

When we want to outline a mechanism for spontaneous pattern formation we

base our investigations on the phenomenon of bifurcations and branchings of solu-

tions of nonlinear partial di�erential equations of the reaction di�usion type

@c

@t

= f(c) +Dr

2

c (3.13)

where the nonlinear function f(c) is the overall rate of production of c from the

chemical reactions, and the second term is Fickian di�usion. Mathematically, this

turns (3.13) into a system of nonlinear partial di�erential equations (PDE's).

The extraordinary richness in the behaviour of the solutions of these systems

is accomplished by the fact that even a partial classi�cation of the solutions is an

extremely arduous task, primarily because of the nonlinear character of the rate

functions.

3.4.1 Theory of Catastrophes

Anyhow, in 1972 R�ene Thom developed a detailed theory in order to classify the

phenomenon of pattern formation, based on an analysis of the structural stability

of ODE's. These equations have no explicit dependence on di�usion, but the entire

spatial dependence of the solutions is incorporated in a parameter �

dc

dt

= f(c; �); � � �(r; t) (3.14)

In this way the symmetry of the system is broken by an external action on

the system � instead of a spontaneous emergence of a pattern developing within

the system itself. But, when we have a quantity to describe a biological function,

it normally will depend both on space and time, and thus be governed by partial

di�erential equations. The result is a mathematical problem involving an in�nity of

coupled degrees of freedom, for which Thom's classi�cation no longer is applicable

([18]). This is a considerable drawback, if our aim is the understanding of biological

processes.

An other important limitation of the theory of catastrophes is that the di�er-

ential equations (3.14) describe potential systems with a �nite number of degrees of

freedom.

@c

@t

= �

@V (c; �)

@c
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= r

c

V (c; �) = f(c; �)

called a gradient system, where V is a potential function.

The limitation consists in the fact that the dynamics of the kind of dissipative

systems which we are interested in, are far away from the thermodynamic equilib-

rium. But only in very special cases such a system can be derived from a potential:

a system involving only a single variable, or systems in the neighbourhood around

the state of thermodynamic equilibrium. For instance is it impossible for a system

like (3.15) to exhibit limit cycle behaviour. This can easily be seen from

@V

@t

=

@V

@c

@c

@t

= �

�

@c

@t

�

2

integrating over a time interval T yields

4V � V (t+ T )� V (t) = �

Z

t+T

t

�

@c

@t

�

2

dt � 0 (3.15)

which only can be consistent with our assumption of a periodic solution (V (t+T ) �

V (t) for T being the period), when

@c

@t

vanishes, but this is a set of points with

measure zero.

As can be seen from the above investigations, the theory of catastrophes seems

to be no appropriate candidate for the modeling of selforganizing phenomena in

biological and chemical systems.

In contrast, the reaction-di�usion models given by eq. (3.13), are selforganizing

and show temporal and spatial order in a de�nite region of parameter space. In the

next chapter we will investigate the Turing models and show that it is in fact possible

for a simple autocatalytic chemical systems to generate stable spatial patterns if

the initial homogeneous distribution of the reactants is perturbed by for instance

a random 
uctuation. The system will then develop towards a new concentration

distribution which is inhomogeneous and yet stable.

One must admit that at this time there exists no classi�cation of the solutions of

partial di�erential equations comparable in generality to Thom's theory of ordinary

di�erential equations. However, by performing bifurcation analysis as in the previous

section, one can construct explicit forms of the solutions in the neighbourhood of

the bifurcation points and in this way obtain a preliminary classi�cation of these

solutions [18].
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Chapter 4

The Turing Mechanism

Chemical reaction-di�usion systems are known to exhibit spatial or temporal

patterns if they are kept far away from the thermodynamic equilibrium by a con-

stant supply of fresh reactants. These thermodynamically open systems were, as

outlined before, �rst described by Alan Turing [1] forty years ago. Here in this

chapter we want to examine the mathematical basis for the Turing structures to

emerge, and perform a linear stability analysis which investigates the stability of

the system and of the possibility of self-organizing spatial patterns emerging from a

close neighbourhood of the stable uniform state.

Such a system is mathematically described by eq.(3.13):

@c

@t

= f(c) +Dr

2

c (4.1)

From a mathematical examination of system (4.1) it is found that Turing sys-

tems, of which there are two main types, are mathematically equivalent, in the sense

that they need to ful�l the same conditions in the linear expansions of the steady-

state. Shortly, for a two component system, one component has to be self-activating

(autocatalytic) and the other self-inhibiting, while the cross-activations/inhibitions

of the two morphogenes need to be of opposite sign. If one component activates the

other, this other component has to inhibit the �rst (or vice-versa).

In the second section we will look at the important dispersion relation which

gives information for the most interesting dynamic features of the reaction di�usion

system. There we also derive a relation for the constrains of the ratio of the di�usion

coe�cients necessary to obtain spatial patterns in the system.

In the third section of this chapter we will examine the two types of Turing

systems, of which one is called an 'activator-inhibitor model' and the other 'acti-

vator substrate-depletion model', and try to arrive at some conclusions about their

mutual di�erences especially in the range of early inhomogeneous growth of the

spontaneously developing spatial patterns.

23
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Finally a gel-reactor is introduced which e�ectively allows the observation of

Turing structures in chemical reactions in the laboratory.

4.1 Linear Stability Analysis for Two-Component Sys-

tems

As mentioned in the previous chapter, the main interest from our point of view

is restricted to models consisting of only two species. Such a system is described by:

dX

dt

= f(X;Y ) +D

x

r

2

X

(4.2)

dY

dt

= g(X;Y ) +D

y

r

2

Y

where X and Y describes two di�erent concentrations of either chemical species or

morphogenes in a reaction di�usion system.

To make a well de�ned mathematical formulation of the problem it is necessary

to formulate some boundary conditions speci�c to the system. Here we require

zero-
ux boundary conditions

(n � r)

 

x

y

!

= 0; on @B (4.3)

where @B is the boundary of the domain B. Physically this means that there is

no external input of chemical reactants in the system. We also require the initial

conditions X(r; 0); Y (r; 0) to be given.

4.1.1 The Homogeneous System

Let us �rst analyse the homogeneous system without di�usion:

dX

dt

= f(X;Y );

dY

dt

= g(X;Y ) (4.4)

The state in which there is no change in concentration of the two morphogenes,

the steady-state f(X

0

; Y

0

) = g(X

0

; Y

0

) = 0, will be regarded as a reference state

from where small local perturbations
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x(r; t) = X(r; t)�X

0

(r; t) (4.5)

(expressed by � in the previous chapter) either will cause the system to tend to move

away from the steady state, or the steady state is stable and initial perturbations

or 
uctuations will die and have no e�ect on the system.

For the emergence of Turing structures a reaction-di�usion system exhibits

di�usion-driven instabilities if the homogeneous steady state is stable to small per-

turbations in the absence of di�usion; but unstable to small spatial perturbations

when di�usion is present. So, in the homogeneous case, we need to �nd conditions

where the steady state is stable in the evolution of time.

A �rst order Taylor expansion around the steady state is valid as long

�

�

�

x

X

0

�

�

�

� 1:

f(X) = f(X

0

) +

�

@f

@X

�

X

0

� x (4.6)

Repeating the above step with respect to Y and inserting in (4.4) one obtains the

linearized system:

0

B

@

@x

@t

@y

@t

1

C

A

=

0

B

@

@f

@x

@f

@y

@g

@x

@g

@y

1

C

A

0

B

@

x

y

1

C

A

(4.7)

where

J

0

=

0

B

@

@f

@x

@f

@y

@g

@x

@g

@y

1

C

A

X

0

;Y

0

=

 

f

x

f

y

g

x

g

y

!

(4.8)

is the Jacobian matrix evaluated at the reference state. If we now look at a solution

of the form w / w

0

e

�t

where w =

 

x

y

!

the system will retain its steady state,

and hence be stable if Re(�

i

) < 0. Inserting that solution in the linearized system:

@w

0

e

�t

@t

= J

0

w

0

e

�t

(4.9)

one obtains by di�erentiation

�w = J

0

w (4.10)
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Non-trivial solutions of w can then be found from:

jJ

0

� �Ij = 0 (4.11)

which results in a second order polynomial in �

�

2

� Tr�+Det = 0 (4.12)

known as the characteristic equation. The trace Tr is given as:

Tr(J

0

) = f

x

+ f

y

=

�

@f

@x

�

0

+

�

@g

@y

�

0

(4.13)

and the determinant Det of J

0

as:

Det(J

0

) = f

x

g

y

� f

y

g

x

=

�

@f

@x

�

0

�

@g

@y

�

0

�

�

@f

@y

�

0

�

@g

@x

�

0

(4.14)

This determines the eigenvalues � to be solutions of

�

�

=

1

2

h

Tr �

p

Tr

2

� 4Det

i

(4.15)

The necessary conditions for the homogeneous system to be linear stable are then:

Tr = f

x

+ f

y

< 0; and Det = f

x

g

y

� f

y

g

x

> 0 (4.16)

4.1.2 The Reaction-Di�usion System

Now consider the full reaction-di�usion system described by (4:2) and linearize about

the steady state again

@w

@t

= J

0

w+Dr

2

w; D =

 

D

x

0

0 D

y

!

(4.17)

To solve this equation it is necessary to de�ne a time-independent solution �(r)

of the Laplace operator, r

2

:
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r

2

�

nml

(r) = ��

2

�

nml

(r); (n � r)�

nml

(r) = 0 r on @B (4.18)

Here again n is the unit vector normal to the closed boundary @B of the reaction-

di�usion domain B. The eigenfunctions and eigenvalues will then depend on the

geometry, dimensionality and boundary conditions. This means that all the spatial

dependencies of the linearized equation (4.17) are conditioned by the properties of

the Laplace operator.

Let us look at one example. If eq. (4.18) is solved in one dimension satisfying

zero-
ux boundary conditions on a line of length L; 0 � r � L, then the typical

eigenfunction is:

�

n

(r) / cos

�

n�r

L

�

(4.19)

for r = 0 and r = L leading to �

n

(r) = �1 ; (n � r)�

n

(r) = 0. The eigenvalue

� =

n�

L

(4.20)

is called the wavenumber and is inversely proportional to the wavelength

! =

2�

�

(4.21)

This means that in a system with a constraint on the boundary conditions there

exists a discrete set of possible wavenumbers, and to every wavenumber belongs

exactly one eigenfunction. The computer simulations in the next sections are all

solved for one dimension and zero-
ux boundary conditions and therefore correspond

to these results.

If we had boundary conditions stipulating the vanishing of '

n

at r = 0 and

r = L the typical eigenfunction would become: �

n

(r) / sin

�

n�r

L

�

. If eq.(4.18) is

solved on a two dimensional circular layer, �

n

(r) will be given by the product of

Bessel functions and trigonometric functions [19].

Let us return to (4.17). Because the problem is linear the solution w(r; t) of

eq.(4.17) can generally be described as a sum of the product functions

w(r; t) =

X

�

c

�

e

�t

'

�

(r) (4.22)

and for the two variable system in one dimension

 

x

y

!

=

 

c

1

c

2

!

e

�t

cos

�

n�r

L

�

(4.23)
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Now, inserting this in (4.17) the �'s are determined by the roots of the charac-

teristic polynomial

�

�

�

J

0

�D�

2

� �I

�

�

�

= 0 (4.24)

leading to the dispersion relation

�

2

� �

h

Tr � �

2

(D

x

+D

y

)

i

+ P (�

2

) = 0 (4.25)

where

P (�

2

) = Det� �

2

(f

x

D

y

+ g

y

D

x

) + �

4

D

x

D

y

(4.26)

Here again Tr is the trace and Det the determinant of the Jacobian matrix (4.8)

evaluated at the steady state.

As said before, if we want to �nd symmetry-breaking patterns, we seek for a

solution where the system becomes unstable. Because Tr < 0, P (�

2

) in eq.(4.25)

has to be negative in order to destabilize the system. Otherwise the polynomial

could not have any roots with positive real part. Thus, a necessary condition is

f

x

D

y

+ g

y

D

x

> 0 (4.27)

and since Tr = f

x

+ g

y

< 0

D

x

6= D

y

(4.28)

This result shows that Turing instabilities in general can occur only if the dif-

fusion coe�cients of the two species are not equal. This is a necessary but not a

su�cient restriction and it has also for many years been the main obstacle for the

experimental working scientist to observe Turing patterns. Biological experimental-

ists have di�culties in pinning down one mechanism responsible for morphogenesis,

and chemical experimentalists mainly work in aqueous solution where the di�usion

rates normally are of the same order of magnitude.

4.2 The Dispersion Relation and the Di�usion Ratio

We can de�ne a critical ratio between the two di�usion coe�cients D

x

and D

y

as

d

c

=

 

D

x

D

y

!

crit

(4.29)
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d > dc
d = dc

d < dc

P

k^2
0

Figure 4.1: P (�

2

) as a function of �

2

.

Only when the di�usion ratio d is larger

than d

c

it is possible to destabilize the

system.

lambda

k

d > dc

d = dc

d  < dc

0

Figure 4.2: Schematical plot of the

largest eigenvalue �(�

2

) as a func-

tion of �. When d > d

c

a �nite range

of wavenumbers are linearly unsta-

ble.

for which it is possible to obtain the desired di�usion induced instabilities, so that

the function P (�

2

) becomes negative for a �nite range of wavenumbers �

2

creating

unstable modes where the real part of the largest eigenvalue becomes positive.

Fig. 4.1 and 4.2 shows this schematically. Especially �g. 4.2, which is called the

dispersion plot is very informative when characterizing the evolution of patterning

since it immediately says which eigenfunctions, that is which spatial patterns, are

linearly unstable and grow exponentially with time. The key assumption is that the

linearly unstable eigenfunctions not will grow in�nitely, but instead will be bounded

by the nonlinear terms in the rate equations. Thus, a new steady state of spatially

inhomogeneous solution should emerge.

Since it is the di�usion ratio which causes the main drawback in the theory of

pattern formation for Turing structures, many ideas and improvements have been

suggested in order to at least diminish this requirement. We will explore some

di�erent mechanisms where the ratio d

c

comes close to unity, and where the Turing

domain in parameter space is increased.

Let us �nd an explicit expression for the di�usion coe�cient ratio d in terms of

the parameters in the system. To do so, we start with equation (4.26).

P (�

2

) = Det� �

2

(f

x

D

y

+ g

y

D

x

) + �

4

D

x

D

y

(4.30)

The extremum of this polynomial obtains for

�

2

=

f

x

D

y

+ g

y

D

x

2D

x

D

y

(4.31)

inserting in (4.30) one �nds the fastest growing mode �

4

going like



30 CHAPTER 4. THE TURING MECHANISM

�

4

=

Det

D

x

D

y

(4.32)

and a standard inequality obeying the demand P (�

2

) < 0) and Det > 0

0 < Det <

(f

x

D

y

+ g

y

D

x

)

2

4D

x

D

y

(4.33)

Now we want to �nd an explicit inequality for d =

D

x

D

y

. Rearranging (4.33) we get

g

2

y

d

2

� d(2f

x

g

y

� 4f

y

g
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which has two roots
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(4.35)

Only one of these applies though: From eq. (4.27) we have

g

y

d > �f

x

(4.36)

but from eq.(4.35)
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So, for the negative root we get
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Since f

x
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< 0 we can say that f
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g
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and thus
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< 0 (4.38)

when g

y

is positive.

As said before, when g

y

> 0 then f

x

< 0 and by investigating inequality (4.36)

one sees that the negative root for d does not apply. The other root then yields

d =

D

�

D

+

>

(Det� f
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g
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) + 2
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�f
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Det
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(4.39)
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where D

�

is the di�usion coe�cient for the self-inhibitor and D

+

the di�usion

coe�cient for the self-activator. This inequality holds for Turing matrices with

positive g

y

, that is for the matrices

 

� +

� +

!

(A2) and

 

� �

+ +

!

(S2) (4.40)

The two remaining Turing matrices where f

x

is positive obey the same inequality

when interchanging x and y, that is for the Turing matrices

 

+ �

+ �

!

(A1) and

 

+ +

� �

!

(S1) (4.41)

we have an inequality of the form

D

�
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>

(Det� f
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y
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Det
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2
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(4.42)

here D

�

= D

y

and D

+

= D

x

in contrast to before.

In the following chapters we will use these particular inequalities for the ratio

of di�usion coe�cients to show that the di�usion constants may become almost

equal in magnitude when the cooperativity of the de�ning kinetics becomes as high

as is seen in genetic control systems (chapter 6). When concerned with a Turing

bifurcation from an unstable branch in a bistable system, it is also possible to obtain

a similar inequality. This will be one of the subjects in chapter 7.

4.3 Activation-Inhibition and Activation Substrate-Depletion

The inequalities (4.39) and (4.42) show that the di�usion coe�cient of the

activator must be smaller than the di�usion coe�cient of the inhibitor (normally

about a factor of ten) if spontaneous patterns are to occur. This is why one speaks

of 'short range activation' and 'long range inhibition'. But there are problems with

this explanation; x and y both develop into patterns at the onset of instability with

the same wavelength. This means that there is no fast di�using inhibitor, which

traps a slow di�using activator into patterns.

For the systems:

 

+ �

+ �

!

(A1) and

 

� +

� +

!

(A2) (4.43)

one has the notion of a 'real activator-inhibitor model'. One component activates

itself and the other, while the second component inhibits itself and the �rst. The
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Figure 4.3: Schematic diagram of a gel reactor. This particular gel reactor was used

for the iodate-ferrocyanide-sul�te reaction studied by Lee et. al.

inhibitory e�ect is not only due to the fact that the inhibitor inhibits the activator

directly, but also because the activator produces its own inhibitor. But this structure

of the Jacobian matrix cannot be used to develop the common qualitative picture of

inhibitors and activators trapping or catching each other, because, as we later will

see more clearly, the concentrations of both the two components always have high

concentration in the same region in space and thus are in phase. In contrast, the so

called 'activator-substrate depleted' systems:

 

+ +

� �

!

(S1) and

 

� �

+ +

!

(S2) (4.44)

are characterized by opposite signs of the cross-couplings resulting in a spatial distri-

bution out of phase. That is: one is high where the other is low. We will investigate

this qualitative di�erence more closely in the next chapter.

4.4 The Gel-Reactor

The fact that almost all chemical species have nearly equal di�usion coe�cients

in aqueous solutions, has been the major problem for obtaining di�usion induced
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Figure 4.4: Experimentally ob-

tained Turing structures in the

EOE-reaction.

Figure 4.5: Experimentally ob-

tained Turing structures in the

CIMA-reaction.

instabilities in chemical reactions analysed in the laboratories. Several authors have

pointed out that this di�culty can be overcome if the activator reacts with an

immobilized substrate to form an immobile complex [22],[23].

Now gel-�lled reactors are widely used for the study of sustained patterns arising

from the interplay of di�usion and chemical kinetics, and many chemical reactions

have been investigated since then. But still it seems rare to �nd Turing structures

and the only exception within the last three years is the bistable iodate-ferrocyanide-

sul�te reaction, known as the EOE-reaction. It is based on the classical iodate-

sulphite clock reaction by Landolt [24]. We will investigate this reaction and its

many new pattern features more deeply in chapter 8.

Figure 4.3 shows a typical gel disc reactor. A thin polyacrylamide gel layer is fed

di�usively by a continuously refreshed reservoir of chemicals. The gel is su�ciently

thin so that the patterns can be considered approximately two-dimensional. There

are two thin membranes between the polyacrylamide gel and the stirred reservoir,

one Anopore disk that provides structural rigidity for the thin gel layer and another

that provides a white backing for visualization of the patterns. The chemicals are

premixed before entering the reactor reservoir and both are vigorously stirred to

ensure homogeneity.

Figure (4.4) shows some typical two-dimensional structures obtained experi-

mentally for the EOE-reaction. Fig.(4.5) shows experimentally obtained hexagons

in the CIMA-reaction.
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Chapter 5

Initial Growth and Damping

In this chapter we will try to examine the initial pattern growth in some partic-

ular models in order to reach a closer understanding of the role of the two species

interacting cooperatively. The mode selection of the system as a function of di�erent

kind of perturbations is also an interesting point on which we focus. The dependence

of boundary conditions, length of the system and initial conditions is investigated

by computer simulations in one space dimension.

First the Lengyel-Epstein model is considered as a representative of the 'activator-

inhibitor' systems (with an A1-structure in the Jacobian), and as an opponent the

Sel'kov model is investigated, since it is an 'activation substrate-depletion' model

(S2-type).

The simulations on the computer where carried out with a C-program consisting

of 98 coupled di�erential equations simulating the coupled nonlinear partial di�eren-

tial equations in one spatial coordinate and time, and solved with a sti�-integrator

(for further interest in the computer program, the reader may communicate with

the author).

5.1 The Lengyel-Epstein Model

The �rst clear experimental veri�cation of the stationary concentration patterns

predicted by Turing was made by a group in Bordeaux in 1990 [25]. They used a

Clorite-Iodide-Malonic Acid-Starch reaction (CIMA-reaction) for which a two vari-

able model was proposed by Lengyel and Epstein [23]. The starch has the e�ect that

the e�ective ratio between the di�usion coe�cients is enlarged, thus allowing Turing

structures to occur. The activator-ions (I

�

) are for a small period of time trapped in

a medium of gel-bound (I

2

; I

�

3

) and starch thereby diminishing the di�usion through

the gel. The Bordeaux-group found by numerical studies that only [ClO

�

2

] and [I

�

]

would vary signi�cantly during an oscillation. A reasonable two-variable model is

therefore

35
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From eq.(4.8) the Jacobian becomes:
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In order to ful�l the required structure of signs, J

0

=
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, it is necessary
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f

x

=

@f

@x

= �k

2

+ 4k

3

y

0

"

x

2

0

� u

(x

2

0

+ u)

2

#

> 0 (5.5)

which leads to the condition
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Performing the same analysis as in eq.(4:17) � (4:26) requires that P (�

2

) takes the

explicit form:
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(5.7)

with x

0

; y

0

as in (5.3) and �

2

=

n

2

�

2

l

2

.

We can plot P (�

2

) against the length-scale

D

x

l

2

, and obtain the critical curve

(see �g.5.1). The point where P (�

2

) vanishes is a possible onset of instability,
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Figure 5.1: Dependence of the characteristic polynomial in �

2

versus the length-scale

D

x

l

2

for di�erent values of the wave number n. Areas with P (�

2

) < 0 can give rise to

spatial patterns.D

y

= 0:02; k

1

= 0:01; k

2

= 2e

�3

; k

3

= 6e

�3

and u = 6:94e

�3

which means that at least one of the eigenvalues in eq.(4.25) becomes positive,

corresponding to a destabilization of the steady state as t!1.

It is possible to understand �g.(5.1) in two ways. One can either study P (�

2

) in

terms of the length l of the system, or inversely in terms of the di�usion-coe�cient

of the activator D

x

, by setting the length to 1. If the total length of the system is

less than L

1

1

(or D

x

higher than L

1

1

) the homogeneous state of the system remains

stable, and there is no possibility for the generation of patterns. If the length is

increased beyond L

1

1

, there is a possibility for spontaneous pattern formation due to

the instability of the homogeneous state; see �g.5.2.

Decreasing the di�usion coe�cient D

x

below L

2

1

the steady state is again stable

and no pattern will arise (see �g.5.3) until the point L

1

2

, where one may obtain

a spatial structure with two high concentration points. Moreover, performing the

perturbations with only a small di�erence of their location, creates an bifurcation

between the two possibilities in this area. It depends on the direction and place of

the perturbation. In the �rst �gure (5.4) the activator is perturbated upwards at

the point l = 73, resulting in a maximum in the middle. In the second (5.5) the

perturbation is placed at the point l = 75, resulting in the reversed picture.

Moving into the space between L

1

3

and L

2

2

of �g.(5.1), two possibilities arise

due to the overlapping of various n-values. Structures with two high concentration

points and one low, and structures with two high and two low concentration points

may appear (periods � and

3�

2

respectively). These are shown in �g. 5.6 and �g.
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Figure 5.2: Three-dimensional plot for the development of a Turing structure in

space and time. Here the Epstein model in the area between L

1

1

and L

2

1

, creating

one high and one low concentration point: k

1

= 0:01; k

2

= 0:002; k

3

= 0:006; u =

1

144

;D

x

= 0:00049 and D

y

= 0:02. Perturbation of the activator x at l = 95.
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Figure 5.3: In the area between L

2

1

and L

1

2

, where the homogeneous reference state is

stable, with k

1

= 0:01; k

2

= 0:02; k

3

= 0:006; u =

1

14400

;D

x

= 0:0012 and D

y

= 0:01.

Perturbed at l = 49.
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Figure 5.4: The area between L
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. Two possibilities of pat-

tern formation. Which of these is

obtained depends on the bias in the

initial conditions.
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Figure 5.5: This one is perturbed

at l = 75. The other pa-

rameters are k
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= 0:01; k

2

=

0:02; k

3

= 0:006; u =

1

14400

;D

x

=

0:00056 and D

y

= 0:01. Perturbed

at l = 73.
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Perturbed at l = 71.
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Figure 5.7: Perturbed at l = 49.

These �gures show bistability de-

pending on the location of the per-

turbation.
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5.7 respectively.

Decreasing D

x

further leads to an introduction of higher n-values and their

overlapping create multistable and more complex patterns. Thus, the form of the

�nal pattern is a function of the magnitude of the initial perturbations and their

location in the system [17].

5.2 Couplings and Ampli�cations

We can make a short mathematical investigation of the initial amplitude evolu-

tion at the onset of instability. In this sense we analyse the solutions of the system,

where the eigenvalues of the time dependent part of equation (4.22) just become

zero, so that a root of the characteristic equation (4.25) moves from negative values

to a positive value, i.e. the cross-over point where the homogeneous state becomes

unstable and patterns start to grow. At that point the full Jacobian is:

J = J

0

� �

2

D (5.8)
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To obtain a qualitative picture of the development of a small perturbation at

the bifurcation point, we introduce a small perturbation �:

J� = 0 (5.10)

where

� =
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�

y

!

�

n

(5.11)

we obtain the two linear equations:
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We can use an appropriate expression for �

2

from eq.(4.31) Inserting this in for

instance (5.13) and setting �

y

= 1 we get
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2D
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Figure 5.8: Turing structure in the Epstein model with k

1

= 0:01; k

2

= 0:02; k

3

=

0:006; u =

1

14400

;D

x

= 9:3 � 10

�5

and D

y

= 1 � 10

�3

. Perturbed at l = 49. The

activator and inhibitor has maximum in the same space region. The activator has a

much higher amplitude.

As f

x

is positive and g

y

negative, one obtains a positive term in the numerator.

The denominator is positive and so the entire expression becomes positive. From now

on it is evident that for a Jacobian, with the structure in (4.43), that is the forms A1

and A2, the perturbation �

y

has the same sign as �

x

. Consequently component x and

y will both have maxima (or minima) in the same space regions. The concentration

pattern of the activator and the inhibitor will therefore be in phase.

The Jacobian for the Selkov model on the other hand has a (S2)-structure

and here the analysis of eq.(5.14) results in opposite direction of the growth in

concentration for each of the two components. The �

x

is always negative when �

y

is positive, corresponding to a spatial concentration distribution out of phase (see

�gures next section).

The common understanding of the activator and inhibitor competition is chal-

lenged by this analysis. Generally it is meant hereby that if the activator initially

increases its own concentration locally (and simultaneously generates the inhibitor)

and the inhibitor di�uses faster than the activator - then there will be created an

island of high activator concentration surrounded by high inhibitor concentration

[26]. The usual analogy drawn to give an intuitive notion of the activator-inhibitor

mechanism is that of "�re and �re�ghters" [27]. A �re (the activator) starts in a

forest and the �re�ghters, who had been dispersed throughout the forest, start to
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Figure 5.9: Here the inhibitor is perturbed upwards at l = 4, but it reacts downwards

(see most left corner); resonant with the perturbation of the activator at l = 95.

react against the activator by spraying �re-resistant chemicals (with helicopters) on

the not yet burning trees. The result of this scenario should be an area with patches

of burned trees interspersed with patches of green, unburned trees.

The problem with this analogy is that in a 'real activator-inhibitor' system,

both morphogenes have a maximal concentration in the same space regions, which

should suggest that the trees with most �re-resistant chemicals will burn the best!

(see �g. 5.8) This is unsatisfactory, and we have to �nd another analogy to explain

the phenomena of pattern formation in reaction-di�usion systems. It may not even

be possible to �nd a complete and satisfactory analogy, because the cross-couplings

and nonlinear terms in the equation create too complicated interactions.

Another interesting point is the dominant role of the activator in the initial

pattern growth. Looking at �g.(5.9) and (5.10), we see (apart from small time-

dependent waves arising from small interactions with a Hopf bifurcation) two striking

things: a) when the activator is perturbed upwards, it will remain at high concen-

tration there (and the inhibitor will also have high concentration there), but when

perturbing the inhibitor upwards it will in contrast decrease its own concentration

at this place (and the activator decreases also). b) the perturbation of the activator

is much more 'e�ective' in the sense that when both x and y are perturbed with an

equal amount, the activator will determine the structure of the pattern. In �gure

(5.9), the perturbation develops faster to the �nal pattern, because the inhibitor is

perturbed 'in phase' with the perturbation of the activator x. Fig. 5.10 is slower in

the development of the pattern, because the inhibitor is perturbed out of phase, but
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Figure 5.10: Here the inhibitor is perturbed downwards at the same point.

anyway, the activator still wins the race.

To make sure, I have also simulated the Gierer-Meinhardt model on the com-

puter. It consists of the equations:
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with a (A1)-Jacobian form. As shown in �g.(5.11) this gives rise to the same qual-

itative picture as for the Epstein model. The activator has a larger amplitude and

determines the structure of the pattern.

5.3 The Selkov Model

The Selkov model consists of the equations:
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Figure 5.11: Three dimensional plot of a Turing structure in the Gierer-Meinhardt

model The components are in phase. k

1

= 0:1; k

2

= 0:3; k

3

= 0:2; k

4

= 0:6; k

5

=

0:6;D

x

= 0:0001 and D

y

= 0:01. The inhibitor is perturbed upwards at l = 4 and

the activator upwards at l = 95. x and y are in phase with a much larger amplitude

for x.

Here component one is generated by a constant uniform rate � and transformed into

component two by Hill type kinetics. Component two is created by the same rate

and decomposed by �rst order kinetics. Usually the denominator is neglected and

the equations renormalized to the form
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The Jacobian matrix has a (S2)-form, and the steady-state is x

0

= y

0

= 1. Here

the activator (or at least self-activator) is the y component, and the self-inhibitor is

the x component and the Hill-coe�cient 
 is known from chapter 2.

The full Jacobian J is:

J =

 

�1� �

2

D

x

�


� �(
 � 1)� �

2

D

y

!

(5.21)

In appendixA the amplitude formalism for the Hopf-bifurcation is used to obtain

the Ginzburg-Landau parameters for the Selkov model. In this way it is possible to
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Figure 5.12: Three dimensional plot of a Turing structure in the Selkov model.

The components are out of phase with a factor �. Here the inhibitor has a larger

amplitude than the activator. � = 0:3; 
 = 3;D

x

= 0:005;D

y

= 0:00075. Perturbed

at l = 95 and l = 94.
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Figure 5.13: The activator y is perturbed upwards at l = 4 and the inhibitor upwards

at l = 95. One can see the same e�ect as in the Epstein model: The inhibitor-

perturbation is damped and the activator determines the structure of the pattern;

� = 0:3; 
 = 3;D

x

= 0:005;D

y

= 0:00077.



46 CHAPTER 5. INITIAL GROWTH AND DAMPING

�nd out, whether the Hopf-bifurcation is super- or subcritical for a given value of

the parameter 
; � was used as the critical Hopf bifurcation parameter. But here

we will look at the amplitude of the emerging pattern, and try to �nd out how the

spatial amplitudes are related between the two morphogenes.

Because of the nice scaling in the Selkov model we can go further with the

bifurcation analysis from chapter 4.

The Jacobian for the homogeneous case is:

J

0

=

 

�1 �


� �(
 � 1)

!

(5.22)

Inserting these values in eq.(5.14), one obtains for a small perturbation �

x

:

�

x

= �

D

y

2D

x

�

�

(
 � 1)

2

(5.23)

As in the section before �

y

was set to 1; and we see that �

x

always is negative

(corresponding to a concentration pattern out of phase). If we set �

x

= �1, we

can �nd an expression where the initial growth rate of the two patterns is equally

strong; that means we want to �nd a critical value where the amplitudes of the two

morphogenes is equal. Now, at the bifurcation point, the fraction

D

x

D

y

is precisely

equal to the condition (4.33):

D

x

D

y

=

1 + 
 + 2(
)

1

2

�(
 � 1)

2

(5.24)

Inserting this in (5.23) we get:

�

x

= �

(
 � 1)

2

�

(
 � 1)

2

2 + 2
 + 4(
)

1

2

= �1 (5.25)

After some manipulations one �nds a polynomial in 





2

+ 


3

2

� 2
 � 3


1

2

� 1 = 0 (5.26)

where the only positive root is:


 =

1

g

2

' 2:618 (5.27)

where g is the golden number. So, when 
 >

1

g

2

the inhibitor x has a larger amplitude

than the activator y, and when 
 <

1

g

2

the activator has a larger amplitude than

the inhibitor. This somewhat funny result might suggest that we have used some

symmetric assumptions as condition for the analysis at the bifurcation point. Later

in chapter 6 we will investigate the e�ect of larger values for the Hill constant 
.

In this case it can already be stated that the amplitude of one component growths

while the amplitude of the other component drops to very low values.
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Figure 5.14: The Selkov model. Note the fast coupling throughout the system, and

also the initial damping of the perturbation, which repeatedly has been observed.

Only the inhibitor is shown.

5.4 Concluding Remarks

As seen from �g.5.14 the coupling throughout the system is very fast and the

pattern �rst starts to grow after an initial damping of the perturbation. If the pa-

rameters are chosen outside the Turing space (as in �g. 5.15), the initial perturbation


attens out and the steady state becomes stable.

It is an interesting feature that there has to exist a minimal system size below

which spatial patterns cannot occur. It can be explained as follows [19]: In the

spatially distributed reactive system, chemical reactions and di�usion cooperate in

a symmetry-breaking manner. The chemical kinetics can give rise to a runaway

phenomenon by amplifying the e�ect of a small perturbation. The di�usion tends

to smear out the inhomogeneities caused by this, but it does not quite succeed in

erasing them. Therefore, the result is a space pattern whose characteristic length

re
ects the average distance over which a group of reactive molecules can di�use

before a reaction takes place. If the system is small, the e�ective di�usion rate

(which is proportional to

D

l

2

) is tremendously enhanced and so the homogenizing

feature of the di�usion rate dominates the entire system, corresponding to no pattern

formation.

The terminology of activators and inhibitors is indeed questionable, especially

if it is used to give a simple picture of the generation of patterns. The reason for

the understanding of reaction-di�usion system as a competition between an activa-
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Figure 5.15: The Selkov model. Here the inhibitor is perturbed at l = 95 and the

activator at l = 4 with the same amount. Even though the inhibitor di�uses faster,

the activator produces the structure more e�ectively with a much broader range.

The parameters used are: � = 0:3; 
 = 3;D

x

= 0:001;D

y

= 0:000166.
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Figure 5.16: Downward perturba-

tion of the inhibitor at l = 95 with

n = 1. This plot has parametric

conditions near the border of the

Turing space: � = 0:3; 
 = 3;D

x

=

0:15;D

y

= 0:023.
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Figure 5.17: This plot has been

taken deep inside Turing space. The

coupling through the system be-

comes much stronger and the �nal

stable pattern is reached almost at

once. The parameters are: � =

0:5; 
 = 3;D

x

= 0:15;D

y

= 0:023.

tor and an inhibitor migth be found in the fact that the only models analysed are

two-component models, creating a dialectical distinction between them. Surely it is

possible to obtain pattern formation in a three-component system, and here it is not

so easy to talk about activators and inhibitors any longer (it is actually possible to

have a three-component Turing system, where all components are self-inhibitory).

The reason for these symmetry-breaking phenomena is due to the interaction be-

tween chemical kinetics and di�usion, and not because of a competition of activa-

tors/inhibitors. Of course, there has to be an autocatalytic step involved (often due

to double-inhibition), but only for the reason that at least one of the morphogenes

can create itself; i.e. it must be autocatalytic.

Another interesting observation, also due to Murray [28] is the much greater

sensitivity towards parameter variations in the Epstein model, than is the case in the

Selkov model. Generally, the models given by (4.44) (substrate depletion- systems),

are more stable against variations than the activation-inhibition models.

In our investigation of the importance of initial conditions and magnitude of

perturbations we found that many di�erent patterns can come into existence even

with the same parametric conditions (se �gures 5.6 and 5.7). In this case, one might

object that several solution behaviours of pattern formation could possess some

conceptual di�culties from a developmental biology point of view. But development,

however, is a sequential process and so a previous stage generally cues the next.
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Chapter 6

Cooperative Systems

In chapter 2 we mentioned the inclination towards high cooperativity in genetic

control systems and other enzyme regulating processes in the cell. There, the al-

lostery of enzymes was shown (already with only two binding sites) to give better

"on-o�" control of the reaction rate, since the enzyme complex activates further

binding instead of only converting the substrate into a product. Why should en-

zymes want to do so, if not because the biochemical regulation processes become

more stable and controllable? In aqueous chemical complexation mechanisms, such

as the copper-ammonium system (�g. 6.1) the reaction constants decrease with

increasing binding of more ligands to the copper(II)-ion.

Cu

Cu

+ NH

3

k

1

NH

3

+ NH

3

k

2

.....

k

2

Cu

k

4

NH

3

NH

3

NH

3

NH

3

2+ 2+ 2+

Figure 6.1: In this normal complexation mechanism the successive reaction constants

k

i

are ordered with decreasing value k

1

> k

2

> :: > k

4

. A square symbolizes an

active state, whereas a circle symbolizes an inactive state, which facilitates no further

binding. The ellipse symbolizes an intermediate state.

For allosteric enzymes the reverse is true. Here a binding of a substrate S to an

enzyme E facilitates further uptake (if the substrate is an activator for the enzyme),

and the enzyme becomes in e�ect an on-o� switch for the rate of reaction. Fig. 6.2

shows this schematically. The four initially inactive states convert into active states

all together if one substrate S binds to one of the states. The rearranged enzyme

works thus as a catalyst.

The overall reaction rate v for this strong positive cooperation is expected to

be approximatively expressed by eq. 2.14:

51
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+ S

S S

Figure 6.2: The enzyme with four inactive binding sites will, after a binding with an

activating substrate S, undergo a transformation (normally a spatial rearrangement

of the molecule) and become active. This is the normal e�ect producing enzyme

control.

v =

QS




K

m

+ S

(6.1)

where 
 > 1 is the Hill coe�cient. With increasing 
 the system approaches o�-on

control in the reaction rate, as shown in �g. i 6.3.

If the concentration of S is su�cient small, the denominator in eq. 6.1 can be

neglected, leading to v / k

1

S




, so that S is an activator for the rate of reaction.

On the contrary, if v can be approximated by v '

f(S)k

1

k

2

+S




, provided f(S) is of order

less than S, the substrate is an inhibitor, and the rate of reaction declines when 


becomes larger - in the same way as it increases for S being an activator, as in �g.

6.3.

0 0 0

S S

v

v v v

Figure 6.3: As 
 increases the in
ection of the curve becomes more dominant, and

for su�ciently large 
 the reaction rate is controlled by a virtual "on-o�" switch

sensitive to the concentration of S.

The properties of such coupled biochemical networks with allosteric enzymes
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become very quickly complex. The modelling of such connected highly nonlinear

systems is of course not too realistic, since the underlying assumption for eq.(6.1)

is that E + nS combine to form a complex in one step. This is not very probable if

n > 2, and often n is not even an integer. Normally one obtains two polynomials in

S, v =

f(S)

g(S)

, but when we combine several reactions, and neglect fast intermediary

reactions, the approximation by Hill type kinetics (eq. 6.1) can anyway be very

useful for a qualitative understanding of the behaviour of the system, and re
ect the

experimental observations remarkably good.

6.1 Turings Mechanism with High Hill Numbers

A recent development in the understanding of these higly nonlinear control

systems [14], is the recognition that a system gradually approaching o�-on control,

becomes increasingly prone to create phenomena known from the study of nonlin-

ear dynamics, such as chemical oscillations and trigger waves, controlled pattern

formation by Turings mechanism, as well as multistable systems.

We will limit our self to demonstrating that high cooperativity greatly facilitates

pattern formation by Turings mechanism. Usually e�ective Hill numbers in such

studies have been taken to be less than approximatively 3, as this equals the actual

values measured for enzyme regulation in the cytoplasm. In genetic control systems,

it is however common to have substantially larger Hill numbers, often apparently in

excess of 8.

In particular, we will use the previous derived relations for the di�usion ratio to

show that the di�usion constants may become almost equal in magnitude when the

cooperativity of the de�ning kinetics becomes as high as is seen in genetic control

systems. We shall demonstrate this for a number of particular models.

6.1.1 The Selkov Model

First consider the Selkov model in the renormalized form

@x

@t

= 1� xy




+D

1

r

2

x (6.2)

@y

@t

= �xy




� �y +D

2

r

2

y (6.3)

which has the stationary solution x

0

= y

0

= 1. The Jacobian elements become

f

x

= �1, f

y

= �
, g

x

= � and g

y

= �(
 � 1).

Stability towards homogeneous oscillations are provided by

Tr = �(
 � 1)� 1 < 0 (6.4)

and det = �. Thus an increasing cooperativity, measured by Hill constant 
, make

the system more prone to autonomous oscillations, which is a well known result. For
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 > 1 the Jacobian becomes a Turing matrix of the form (S2). The ratio between

di�usion constants, inequality (4.39), evaluates to

D

�

D

+

>

1 + 
 + 2

p




�(
 � 1)

2

>

1 + 
 + 2

p





 � 1

(6.5)

where we have used inequality (6.4). Inequality (6.5) may be rewritten

D

�

D

+

>

p


 + 1

p


 � 1

(6.6)

For increasing cooperativity 
 the ratio between di�usion constants approaches

one.

In the following we shall demonstrate that the same may be shown for a number

of other mechanisms. Whenever the e�ective Hill constant increases the critical

ratio of di�usion constants approaches one. Thus Turing instabilities are greatly

facilitated by high nonlinearity in the kinetics.

6.1.2 The Brusselator

To show this for an extension of the Brusselator scheme, consider the generalized

kinetics

@x

@t

= Ax




y � (B + 1)x+ 1 (6.7)

@y

@t

= �Ax




y +Bx (6.8)

Usually 
 is set to 2. Here we consider higher values. The stationary solutions

are x

0

= 1, y

0

= B=A. With w = B(
 � 1), the Jacobian elements evaluate to

f

x

= w� 1, f

y

= A, g

x

= �w and g

y

= �A. Thus to have a Turing matrix we must

have w � 1 > 0. The inequality (4.13) becomes

(w � 1)�A < 0 (6.9)

and det = A. Thus the ratio of di�usion constants must satisfy inequality (4.42)

which evaluates to

D

�

D

+

>

A(1 + w + 2

p

w)

(w � 1)

2

(6.10)

>

p

w + 1

p

w � 1

(6.11)

where we again have used the condition for the trace, inequality (6.9). Since w =

B(
 � 1), increasing cooperativity again results in a ratio of di�usion constants

approaching one.
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Note however, that an increase in 
 now may be compensated by a lower value

of the e�ective rate constant B. However, if the other kinetics is unchanged, but

the system has its cooperativity increased, then the system becomes increasingly a

Turing system.

6.1.3 The Schnakenberg Model

We shall pursue with yet another mechanism, a generalized Schnakenberg model

@x

@t

= A� x+ x




y (6.12)

@y

@t

= �x




y +B (6.13)

With the temporary abbreviation

w

1

= A+B (6.14)

the stationary state evaluates to

x

0

= w

1

(6.15)

y

0
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B

(w

1
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(6.16)

and the Jacobian becomes

J =

 

B


w

1

� 1 w




1

�

B


w

1

�w




1

!

(6.17)

This is a Turing matrix of type S1, Eq.(4.8) if matrix element a > 0 that is

B


w

1

� 1 > 0 (6.18)

The determinant is w




1

and the trace inequality (4.13) is

Tr =

B


w

1

� 1� w




1

< 0 (6.19)

The ratio of the di�usion constants, inequality (4.42), evaluates to
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(6.20)

From inequality (6.19)
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and thus (6.20) becomes,

D
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2
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p

w + 1

p

w � 1

(6.22)

with

w =

B


w

1

=

B


A+B

(6.23)

Again the ratio of di�usion constants approaches one when 
 increases as w is

proportional to the Hill constant 
.

6.1.4 The Gierer-Meinhardt Model

We proceed with a generalized version of a classic explicit activation-inhibition

model, as proposed by Gierer and Meinhardt.

@x

@t

= A�Bx+

x




y

(6.24)
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� y (6.25)

Observe that the term with high nonlinearity is not taken to be the same in the

two rates, contrary to our earlier models. With

w

1

=

B

A+ 1

(6.26)

the stationary concentrations are

x

0

=

1

w

1

(6.27)
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(6.28)

The Jacobian elements become f

x

= w

1


 � B, f

y

= �w




1

, g

x

= 
w

�
+1

1

and

g

y

= �1 respectively. This is a Turing matrix of type A1 in Eq.(4.8) provided

w

1


 �B > 0. The trace and determinant evaluate to

Tr = w

1


 �B � 1 < 0 (6.29)

det = B > 0 (6.30)
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The ratio of di�usion constants is evaluated from inequality (4.42) to yield
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It is convenient to change to variable

w

2

=




A+ 1

(6.32)

and thus 
w

1

= Bw

2

. Using the trace inequality (6.29) B(w

2

� 1) < 1 inequality

(6.31) becomes
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2

+ 1

p

w

2

� 1

(6.35)

As w

2

is proportional to the Hill coe�cient 
, we again �nd that for increasing

cooperativity the ratio between di�usion coe�cients converges to one.

6.1.5 The Lengyel-Epstein Model

Finally we consider a generalized Lengyel-Epstein model of the form

@x

@t

= A� x�

Cxy

1 + x




(6.36)
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xy

1 + x




) (6.37)

Here the nonlinearity is only inhibitory, whereas our former examples were

cooperative activation. With the abbreviation

w

1

=

A

C + 1

(6.38)

the stationary concentrations evaluate to

x

0

= w

1

(6.39)

y

0

= 1 + w




1

(6.40)

and the Jacobian matrix elements become
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This is a Turing matrix of type A1 in Eq.(4.8) provided f

x

> 0 that is

�1�C +

C
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> 0 (6.43)

The condition for the trace becomes
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where we have introduced another temporary abbreviation
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(6.45)

The determinant is

det = (C + 1)

Bw

1

w

2

(6.46)

and the ratio between di�usion constants, inequality (4.42) evaluate to
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Using inequality (6.44) in the form
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inequality (6.47) may be written
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(6.50)
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z + 1

p

z � 1

(6.51)

where we have �nally introduced variable z by
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Figure 6.4: Pattern formation by Turings mechanism is facilitated by increasing

cooperativity and thus high e�ective Hill constants 
 in the de�ning rates. The

dispersion relation is plotted for the Selkov model (left) an for the Lengyel-Epstein

model (right) for three di�erent 
 each.
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If

(
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C+1
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C+1
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! 1 (6.53)

which is ful�lled by

A

C + 1

� 1 (6.54)

variable z becomes proportional to 
 and thus again; the high cooperativity facili-

tates Turing structures, as the ratio between di�usion coe�cients converges to one.

The condition (6.54) is the same as stating that the stationary concentration of x

ful�ls x

0

� 1 which again means that the system operates on the strongly inhibitory

side of the term

Cxy

1 + x




(6.55)

in the de�ning rates.

In all the models investigated here, we obtain an expression of the form
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p
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(6.56)

where z is function of 
, usually a linear function at least for suitable parameter

values, and thus z increases with increasing cooperativity 
.

We shall proceed by noting that the dispersion equation Eq.(4.25) yields an

increasing Turing region with increasing Hill number. In Fig. 6:4 we have calculated

the eigenvalue � from Eq.(4.25) as a function of wave number � as is usual, but with

the extension of plotting a set of such curves for increasing values of the Hill constant


.

It is tempting to suggest, as a conjecture, that this will always be true, but even

with occasional exceptions to this rule the above results show that a substantial class

of models become Turing systems with increasing cooperativity. Thus the usually

stated requirement of having e�ective di�usion coe�cients di�er by almost an order

of magnitude, which is often found in systems with small Hill constants, is relaxed in

gene control systems where much larger e�ective Hill constants have been recorded.

Cooperativity with e�ective 
 in excess of 8 has been recorded experimentally for

several di�erent gene control systems. Such high Hill constants may have developed

under evolutionary pressure, as they are necessary for accurate control in other

contexts, even in single cells, but such control systems also become increasingly

prone to create spontaneous pattern formation by Turing mechanisms.

z

D

�

D

+

2

4

8

16

5:83

3:00

2:09

1:67

Table 1

Table 6.1: Ratio of di�usion coe�cients D

�

=D

+

in a Turing system approaches one

when e�ective Hill constant increases according to Eq.(6.56). In this equation z is a

function of the e�ective Hill constant 
 and for a number of mechanisms it has been

shown here that z ' 
 at least for suitable parameter combinations.



Chapter 7

Bistable Systems

7.1 A New Pattern Forming Mechanism in Bistable Sys-

tems

The recent experimental observations of a new type of stationary concentration

patterns in a gel reactor reported by Lee et.al. [20, 21] are based on the bistable

iodate-ferrocyanide sul�te reaction. For some values of the ferrocyanide concen-

trations, the system makes a hysteresis loop between the two homogeneous steady

states as the 
ow rate is varied. The observed patterns are for some values initiated

by �nite amplitude perturbations inside the bistable area rather than through spon-

taneous symmetry breaking. For other values of the feed concentration, the lamellar

patterns emerge spontaneously from the high pH state.

A variant of the Gray-Scott model proposed by Pearson [29] is regarded as a

qualitative skeleton model for these phenomena. However, some further analysis

shows that the patterns in this model rather are normal Turing structures emerging

from one of the two stable states [30]. The enormous variety of observed structures

in this model seems also to be a result of the permanent interaction with a Hopf

bifurcation close to the saddle-node. The experimental results from Lee et.al. show

stable labyrinthic patterns and fronts propagating towards each other until a critical

separation where they stop. These observations suggest that the mechanism involved

is somewhat di�erent than a normal Turing branch emerging sub- or supercritically

out of a stable state.

The approach in this chapter is based on the idea that the unstable steady state,

enclosed by two stable steady states, can undergo a kind of Turing bifurcation or

rather a secondary di�usion driven instability, where a spatial mode di�erent from

zero can be selected and form these reported pattern phenomena. With this pure

Turing bifurcation from the unstable branch the patterns are markedly di�erent by

being irregular and pinned. When starting from the unstable branch any small per-

turbation breaks the symmetry and the two stable states catch or hold the pattern,

and it does not seem possible for one speci�c mode to determine the global picture

alone. In the next chapter we will also show that a front, starting the system from

61
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one of the stable steady states, grows and spreads to �ll space in the same way as

observed in the experiment.

One of the important points in this scenario is again the required restriction of

the ratio of the di�usion coe�cients when a secondary Turing bifurcation emerges

out of the unstable branch, and the comparison of the same restriction in a normal

Turing bifurcation. The actual value of the required ratio of the di�usion coe�cients

is of course model dependent, but our hope is that the general picture for this new

mechanism shows much less restrictive conditions for the emergence of stable spatial

patterns than is the case with the previous ones.

In the next chapter we will �rst give a short review of the history of this reaction

an thereafter derive a caricature model of the EOE model based on the reduction

of the empirical rate-law model proposed by G�asp�ar and Showalter [32]. In many

respects this simple model shows the same qualitative features as the experimental

results by Lee et al. and it has the above discussed form. We will see that in some

region of parameter space the ratio of the di�usion coe�cients only needs to be

slightly larger than one, and the patterns formed are highly irregular as is the case

with the experimental results. In this chapter we will explore the general mechanism

and discuss the importance of this from a more theoretical point of view. Some of

the patterns formed from the model in the next chapter will anyway be shown here.

7.2 General Mechanism

Many of the models that have been developed to study di�usion-driven insta-

bilities only exhibit a single homogeneous steady state as is the case for instance in

the Brusselator and the Lengyel-Epstein model. This steady state can then, as we

have seen, undergo a Turing instability leading to more or less regular structures.

Recapitulating shortly; a normal two-component reaction-di�usion system

dx

dt

= f(x; y) +D

1

r

2

x

(7.1)

dy

dt

= g(x; y) +D

2

r

2

y

has, after the normal linear expansion and introduction of a small perturbation,

eigenvalues determined by the characteristic polynomial:

�

2

� �

h

Tr � �

2

(D

1

+D

2

)

i

+ P (�

2

) = 0 (7.2)

At the critical point which is given by



7.2. GENERAL MECHANISM 63

lambda

k
0

Figure 7.1: Schematical plot of the real part of the eigenvalue as a function of the

spatial mode � in a normal monostable model.

dP (�)

d�

= 0 at �(�) = 0 (7.3)

where

P (�

2

) = �

4

D

1

D

2

� �

2

(f

1

D

2

+ g

2

D

1

) +Det (7.4)

the dispersion plot looks like �g.7.1: Only when Re(�) > 0 for some � 6= 0 we can

have a growth of an instability to form spatial patterns.

When we perform the same analysis for a bistable system, which contains mul-

tiple steady states, eq.(7.2) becomes a threefold equation for each steady-state. The

transition from a situation with one steady state to three occurs when a parameter

a in the model passes through a bifurcation value. Fig.7.2 (left) is a (x

s

; a) graph

with a hysteresis loop and we expect the steady state in the middle to be linearly

unstable. For simplicity we here con�ne our self to the case of a simple hysteresis

loop, disregarding other multiple steady state systems like mushrooms and isolas.

The dispersion relation looks schematically like �g. 7.2 (right).

For the stable steady-states s

1

and s

2

to bifurcate we require

dP (�)

d�

= 0 at �

s

(�) = 0 (7.5)

But for the unstable branch to have a pattern selection di�erent from the zero mode,

an approximative requirement is

d

2

�

u

(�)

d�

2

> 0 at � = 0 (7.6)
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Figure 7.2: The left �gure shows a normal bistable system with a hysteresis loop. By

changing an appropriate control parameter, the system enters the bistable region.

The right �gure shows a schematical plot of the real part of the eigenvalue as a

function of the spatial mode � in a bistable system. s

1

and s

2

are the two stable

steady-states surrounding the unstable steady-state u.

This requirement presumes that the only minima is located at � = 0, and that

there are no other local minima for � 6= 0. This is in principle a wrong assumption,

but there doesn't seem to be any physical example known, where this other type of

bifurcation occurs (see [31], p.169). So, in e�ect, when a �

u

(� 6= 0) > �

u

(� = 0) we

can have a pattern selected, which is di�erent than the pattern selected when the

zero mode has the maximum growth.

7.2.1 The Di�usion Ratio in Bistable Systems

Here again we are interested in the ratio between the two di�usion coe�cients.

In chapter 4 we obtained the important relation (4.39) and (4.42) which gave us the

necessary requirement for the di�usion coe�cients. We saw that the self-inhibitor

in general needs to di�use 5 to 10 times faster than the self-activator. Here we

�nd generally (by a numerical investigations of di�erent bistable systems) that this

restrictive condition is relaxed in the case of bistable systems. We can even obtain

a similar expression as in section 4.3. When solving eq.(7.6) we obtain after some

manipulations:

�D

1

�D

2

+

�4TrD

1

� 4TrD

2

+ 8f

1

D

2

+ g

2

D

1

4

p

Tr

2

� 4Det

< 0 (7.7)
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Rearranging in order to get an expression for the ratio of the di�usion coe�cients,

we get:

�

D

�

D

+

�

u

> �

p

Tr

2

� 4Det+ Tr � 2f

1

p

Tr

2

� 4Det+ Tr � 2g

2

(7.8)

for systems with a Jacobian (A2) and (S2). The subscript u denotes that this

inequality only is applicable for the unstable branch. For systems with a Jacobian

(A1) and (S1) the inequality becomes

�

D

�

D

+

�

u

> �

p

Tr

2

� 4Det+ Tr � 2g

2

p

Tr

2

� 4Det+ Tr � 2f

1

(7.9)

In the models we have investigated, eq. 7.8 and 7.9 always gives a lower value

than the same equation (4.39) and (4.42) obtained from the normal monostable

Turing models. To illustrate this, look at �gure 7.3. For a d =

D

1

D

2

= 2 it is only the

unstable branch which after the criteria from 7.6 can give rise to a spatial structure.

When decreasing d (that is, going upwards in the �gure) the selected mode is lower,

and the pinning e�ect is larger. Decreasing d below the critical ratio d

c

j

u

, it is the

zero mode which has the larges exponential growth, and a droplet is formed. For

even lower d the homogeneous steady state becomes dominant.

When increasing d (that is: going down in the �gure), another scenario appears.

Close to the primary Turing bifurcation of one of the stable steady states, d

c

j

s

the

pinning disappears. Beyond the bifurcation a new mode emerges.

A typical Turing structure in 2D emerging spontaneously out of the unstable

branch is visualized in �g.7.4 together with a section through the 2D plot showing

the pro�le of the concentration distribution.

7.3 Three Component Systems and Turing-Saddle node

Interaction

Here we will try to obtain the conditions for the linear stability and for the

emergence of Turing structures in a three component system. After that we will go

on and analyse the co-dimension 2 problem of the interaction between the Turing

and saddle-node bifurcation. The motivation for this is the thought that one can

omit the fact that for two-component systems, the fastest growing mode �

4

(from

eq. 4.32):

�

4

=

Det

D

x

D

y

(7.10)

goes to zero, since Det = 0 at the saddle-node, which again implies that the wave-

length !

c

=

2�

�

c

at the critical point goes to in�nity.
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Figure 7.3: Space-time plots for 1D Turing structures and associated dispersion plots

for the reduced EOE-model given in the next chapter. For the values a = 30; b =

1; F = 11 the critical di�usion ratio for the stable and unstable branch respectively

has to be d

c

j

s

=

�

D

1

D

2

�

s

= 2:30 and d

c

j

u

=

�

D

1

D

2

�

u

= 1:76.



7.3. THREECOMPONENT SYSTEMSAND TURING-SADDLE NODE INTERACTION67

Figure 7.4: Turing bifurcation from

the unstable branch only. The

model is the reduced non-oscillatory

EOE-model from chapter 8.
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Figure 7.5: The corresponding pro�le plot

for the y-component. The values are: a =

17, b = 1, F = 7:65,

D
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D

+

= 1:39

lim

Det!0

�

4

c

= 0 ) lim

�

4

c

!0

!

c

!1 (7.11)

In experiments one has never observed this. From the discussion in the �rst

chapter, we of course aim to built models which are valid in the limits. So, this is

one case where we have to admit a theoretical drawback of the model.

As an example, look at �g. (7.6) together with the dispersion plot (7.7). These

�gures are initiated very close to the co-dimension 2 point of a saddle-node and

Turing bifurcation, started with noise from the unstable branch. Fig.(7.8) and (7.9)

are initiated with the same parameters, but from the stable branch.

The patterns obtained should correspond to the analytical fact, that the wave-

length of the pattern goes to in�nity, since it is the zero-mode which is selected in

the limit. But it is not clear from �g.(7.6) whether it has a large wavelength or not.

Maybe it is not always the wavelength with the maximum exponential growth (eq.

7.10) that will be selected.

One might think that the reason for this incompatibility at the hysteresis point

with the experiments is grounded in the fact, that we have con�ned our self to

the study of two-variable models. So, this inconsistency might not exist for three-

component systems. Therefore we will try to do the necessary linear analytical

calculations for a general three-component Turing system, and derive an expression

for the fastest growing mode �

6

c

.

First we can write down the three reaction-di�usion equations:

dx

dt

= f(x; y; z) +D

x

r

2

x
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Figure 7.6: The 2D-plot for the co-

dim. 2 problem started from the un-

stable branch.
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Figure 7.7: The dispertion plot close

to the saddle node - Turing point.
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Figure 7.8: The 2D-plot for the co-

dim. 2 problem started from the

stable branch.
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Figure 7.9: Shows the pro�le

from the pattern from the unstable

branch.
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dy

dt

= g(x; y; z) +D

y

r

2

y (7.12)

dz

dt

= h(x; y; z) +D

z

r

2

z

Again, for the emergence of Turing structures a reaction-di�usion system ex-

hibits di�usion-driven instabilities if the homogeneous steady-state is linear stable to

small perturbations in the absence of di�usion but unstable to small perturbations

when di�usion is present. Let us therefore start to look at the condition for the

homogeneous case.

7.3.1 The Homogeneous Case

dx

dt

= f(x; y; z)

dy

dt

= g(x; y; z) (7.13)

dz

dt

= h(x; y; z)

A linear expansion after the introduction of a small perturbation gives the charac-

teristic determinant:

M =

�

�

�

�

�

�

�

�

�

�

�

f

1

� � f

2

f

3
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h

1

h

2

h

3

� �

�

�

�

�

�

�

�

�

�

�

�

= 0 (7.14)

obtaining the characteristic equation:

�

3

� Tr(M)�

2

+R(M)��Det(M) = 0 (7.15)

where

Tr(M) = f

1

+ g

2

+ h

3

(7.16)
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(7.17)

Det(M) =

�
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f

1
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g
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g

3

h
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�

�

�
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(7.18)

Applying the Routh-Hurwitz conditions (appendix B), we �nd that:

4

1

= �Tr(M) > 0 (7.19)

4

2

= �Tr(M)R(M) +Det(M) > 0 (7.20)

4

3

= �Det(M)4

2

> 0 (7.21)

So, for the homogeneous system to be linear stable we require that

Tr(M) < 0; R(M) > 0 and Det(M) < 0 (7.22)

7.3.2 The Reaction-Di�usion System

Now we progress with the full reaction-di�usion system. Again a linear ex-

pansion after the introduction of a small perturbation gives the full characteristic

determinant:
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= 0 (7.23)

So we obtain the characteristic equation:

a

0

�

3

+ a

1

�

2

+ a

2
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3

= 0 (7.24)

where
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The last term P (�

2

) is the interesting one since it by changing sign from positive

to negative may destabilize the system in order to give solutions of (7.24) with a

positive real part. So the Turing instability may occurs when:

P (�

2

) = b
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�

6

� b
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�Det(M) = 0 (7.25)
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Setting � = 0 and

dP (�

2

)

d�

2

= 0 one obtains an expression for �

2

c

:

�
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b

1
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� 3b

0
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0

(7.27)

In order to have �

2

positive the requirements are:

b

2

1

� 3b

0

b

2

> 0 and (7.28)

b

1

> 0 or b

2

< 0 (7.29)

Now, if comparing b

1

> 0 with Tr(M) < 0 and b

2

< 0 with R(M) > 0 one reaches

again to the restriction that:

D

1

6= D

2

= D

3

or D

1

= D

2

6= D

3

(7.30)

As in the two-component system, Turing instabilities can occur only if the

di�usion coe�cients are unequal. Of course we must emphasize that the conditions

derived here are necessary but not su�cient.

7.3.3 Turing-Saddle node Interaction

At the point of Turing bifurcation the critical mode goes like (7.27):

�
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1

�
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� 3b

0

b

2

3b

0

(7.31)

We can try to isolate b

1

and b

2

, obtaining:
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Reinserting b

1

back in P (�) (7.25):
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leading to:
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reinserting b

2

back in P (�)
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= �2b

0

�

6

+ b

1

�

4

�Det(M) = 0 (7.38)

leading to:
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(7.39)

At the point of saddle-node bifurcation Det(M) ! 0 which means that �

4

!

b

2

b

0

,

�

2

!

b

1

2b

0

which again leads to:

�
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b
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b

2

2b

2

0

(7.40)

Now we have to remember that one of the restrictions for a Turing instability was

(7.29), which in means that either b

1

or b

2

must go through zero at the bifurcation

point. So, here we again have the same result as from the two-component system,

namely that �

6

! 0 at the point where the Turing and saddle-node intersects.

Correspondingly the critical wavelength goes to in�nity.

Our suggestion that the inconsistency between the model and experiments at

the limit of hysteresis is due to the two-variable reduction, has not been veri�ed.

The same inconsistency is still existing for three variable models. Therefore, it might

be necessary to use other analytical techiques at this singular point.
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Figure 7.10: This simulation is made for an extension of the FHN-model:

du

dt

=

u+bu

2

�u

3

�v;

dv

dt

= eps(1+a(u�v)). The values of the constants are a = 0:22; b =

1; eps = 2;

D

�

D

+

= 3. The system was perturbed with u = 0:5 from the lower stable

steady state (u

s

= 0; v

s

= 0). The upper left picture shows the initial curvature of

the front which gives a positive speed of these concave segments. This �nally leads

to a labyrinthic pattern. The dispersion curve for the chosen parameters is shown

in the lower right picture. Only the linear unstable branch has a positive mode

selection.

7.4 Labyrinthic Patterns

The recently observed patterns in bistable systems (in the Fitz-Hugh-Nagumo

model [33] or experimentally in the Edblom-Orb�an -Epstein reaction [20, 21] are

markedly di�erent in comparison with the normal obtained Turing structures. They

are irregular and have typically a labyrinthic structure. Fig.(7.4) shows the develop-

ment of two fronts approaching each other. The tip of the front destabilizes and at a

critical distance the fronts stop instead of invading each other. But the edge of the

front invades the whole space and produces a labyrinthic pattern. This scenario is

investigated more closely in the next chapter, but it is interesting to note here that

the labyrinthine structures observed in bistable systems are obtainable solely from

a secondary di�usion driven instability emerging out of the middle unstable branch.
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Chapter 8

The Edblom-Orb�an-Epstein

Reaction

8.1 The Ten- and Four Variable Models

In 1886 Landolt reported on his investigations of the iodate oxidation of sul�te.

This so called classical Landolt clock reaction [24] is used in classroom demonstra-

tions showing �rst a long period of slow reaction followed by a rapid conversion of

reactants to products visualized by an indicator. His careful studies yielded an em-

pirical expression for the complete consumption of sul�te as a function of reactant

concentrations and temperature. This reaction and some variants, like the iodate-

ferrocyanide reaction and the iodate-arsenous acid reaction, are interesting in their

autocatalytic character, and the reaction with arsenite has served as a model system

for the study of bistability [34].

Recently, Edblom, Orb�an and Epstein [35] (EOE) found oscillatory behaviour

in the iodate oxidation of sul�te in a CSTR when ferrocyanide was included as

a reactant. A description of the reaction in terms of component processes and

associated empirical rate laws was given by G�asp�ar and Showalter [36]. A detailed

mechanism for these processes was proposed, and in result a ten-variable empirical

rate-law (ERL) model reproduced the qualitative and even in some cases nearly

quantitative dynamical behaviour of the system. The component processes for the

10-variable model are
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The empirical rate law is then constructed by writing a di�erential equation for

each of the variable species in the reaction equations. Eleven species result in a 10-

variable dynamical system since the conservation of iron atoms allows elimination of

one variable. A further reduction to eight independent variables could also be done

when considering conservation relations between species containing sulfur atoms and

species containing iodine atoms [36].

In a later paper [37] G�asp�ar and Showalter made a further reduction of the

10-variable ERL model to a four-variable model by considering the following simpli-

�cations:

1. Each process is expressed in terms of iodine with the triiodide equilibrium

incorporated into the rate laws, thereby simplifying the stoichiometry.

2. Of the three acid equilibria involving the oxysulfur species, only the equi-

librium between HSO

�

3

and SO

2�

3

is kept, since equilibria E1 and E3 are

relatively unimportant over the pH range of a typical oscillation.

3. The concentrations of iodate, iodide, ferrocyanide and sulfate are in large

excess, and therefore considered as constants.

After these simpli�cations we have reduced the dynamical system to a four-

variable model consisting of the following symbolic reaction steps

A + Y

k

1

�*

)�

k

�1

X (N1)

X

k

2

�! Y (N2)

2Y

k

3

�! Z (N3)

Z + X

k

4

�! 3Y (N4)

Z

k

5

�! (N5)

where the corresponding species of the chemical reactions are X = HSO

�

3

, Y = H

+

,

A = SO

2�

3

and Z = I

2

.

The resulting ordinary di�rential equations for this system in a CSTR are then

given by

dX

dt

= k

1

AY � (k

�1

+ k

2

+ k

4

Z + k

0

)X (8.1)
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Figure 8.1: The amplitude of oscillations as the function of a parameter in the

system showing a schematical canard bifurcation. Increasing a results in a normal

supercritical Hopf-bifurcation, but at a certain point the amplitude of the oscillations

growths much larger.

dY

dt

= �k

1

AY + (k

�1

+ k

2

+ 3k

4

Z)X � 2k

3

Y

2

+ k

0

(Y

0

� Y ) (8.2)

dZ

dt

= k

3

Y

2

� k

4

ZX � k

5

Z � k

0

Z (8.3)

dA

dt

= �k

1

+ k

�1

X + k

0

(A

0

�A) (8.4)

where k

0

is the reciprocal residence time of the reactor. The last terms in the

di�erential equations for Y and A are the CSTR terms for the in and out 
ow of

hydrogen ion and sul�te.

This four-variable model shows most of the dynamical features from the ten-

variable ERL-model and is also in quite good agreement with the experimentally

observed behaviour. The oscillations in pH are qualitatively the same. When

decreasing the in
ow concentration of hydrogen ions (Y

0

) the system undergoes

a supercritical Hopf bifurcation revealing small-amplitude, high-frequency oscilla-

tions. Decreasing the Y

0

concentration further results in an abrupt change to large-

amplitude, low-frequency oscillations, which suggests a canard [37, 38]. A canard is

a false bifurcation in the sense that even though the quantitative behaviour under-

goes a dramatic change, the qualitative, that is, the oscillatory behaviour, remains.

Fig.8.1 shows this schematically. A similar canard is found in the 10-variable ERL-

model [36].

8.2 Reduction to a Two-variable Model

A further reduction to a minimal two-variable model is of course a desirable goal,

and in order to do so, one needs to �nd the species which are the fastest variables.
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Figure 8.2: The left �gure shows (for Y

0

= 4:0e�3) small-amplitude, high-frequency

oscillations. For Y

0

= 3:8e � 3 one obtains a Turing structure with

D

�

D

+

= 10 as

shown in the right �gure. The other values are k

0

= 1:5e � 3; k

1

= 5:0e + 10; k

�1

=

8:1e + 3; k

2

= 6:0e� 2; k

3

= 7:5e + 4; k

4

= 2:3e + 9; k

5

= 30; A

0

= 9:0e � 2.

They relax to their steady-state values much faster than the other species, and it

is therefore possible to apply the pseudo steady state hypothesis as described in

chapter 2. When examining the scaled equations and the resulting nondimensional

parameters, it is seen that the variables A and Z are very fast in comparision with

X and Y [37]. Thus, assuming

dA

dt

= 0 and

dZ

dt

= 0, we can �nd the steady-state

values as

A

s

=

k

�1

X + k

0

A

0

k

1

Y + k

0

; Z

s

=

k

3

Y

2

k

4

X + k

5

+ k

0

(8.5)

and then the two-variable model becomes

dX

dt

= k

1

A

s

Y � (k

�1

+ k

2

+ k

4

Z

s

+ k

0

)X

(8.6)

dY

dt

= �k

1

A

s

Y + (k

�1

+ k

2

+ 3k

4

Z

s

)X � 2k

3

Y

2

+ k

0

(Y

0

� Y )

The variables A and Z are not really eliminated. They are rather "hidden

variables" since they are expressed in terms of the other variables X and Y. This

of course makes the resulting two-variable model more complex in the kinetic terms

and much more intractable for the mathematical analysis.

It is remarkable that even this minimal two-variable model shows many of the

experimental features as a hysteresis loop, a supercritical Hopf bifurcation and an
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associated canard behaviour with large oscillations in pH. When adding di�usion

to these equations, it is possible to obtain some Turing structures for the right

experimental reaction constants by tuning the 
ow rate Y

0

as shown in �g. 8.2.

But these structures are always associated with a Hopf bifurcation and they

are outside the bistable area. The bistable region itself is inside the canard. Con-

sequently, the oscillations are so large and fast in this region that any numerical

approach was more or less impossible. Because of the sti�ness of the system, any

two dimensional program simulating these equations broke down and only because

of the very sensitive step length control in the 1D program used especially in chapter

5, it was possible to obtain these structures shown above.

The problem was then to try to �nd a good model which resembles the minimal

EOE model qualitatively, and which makes analytical and numerical calculations

practicable.

8.3 The Reduced Non-Oscillatory EOE-Model

It would of course be desirable to use the "real" empirical rate equations 8.7

instead of models with only partial qualitative resemblence, but the information

content of the obtained dynamical behaviour in these "real" equations is very limited,

since we only can have a vague knowledge of which mechanism corresponds to which

phenomenon. When we want to examine dynamical features in space and time from

a more theoretical point of view, it is very important to facilitate the analysis by

using a simple model. Only in this way one can get a general understanding of the

di�erent mechanisms contributing to the complex behaviour of nonlinear dynamical

systems in nature. The characterization of bifurcation points and pattern selection

processes is then a matter of some few parameters contained in the caricature model.

The motivation for the development of a simple model was not the oscillatory

behaviour of the EOE-reaction, but rather the possibility for Turing structures in

the bistable region. The experimental observations by Lee et.al.[20] suggested that

the interaction with a bistable state results in new, and highly irregular stationary

patterns in contrast with the regular patterns such as hexagons, squares and stripes

that have been observed in many nonequilibrium systems. The �gures 8.3 and 8.4

are typical experimentally obtained structures for the idate oxidation of sul�te when

ferrocyanide is added.

In the �rst approach we therefore restricted ourself to the study of Turing-saddle

node interactions, and try to omit Hopf bifurcations.

A non-oscillatory simple variant of the EOE-reaction, based on parametric sim-

pli�cations of the scaled two-variable EOE-model and other approximations, results

in a two variable model given by reaction M1�M5

k

1

�! Y (M1)
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Figure 8.3: Experimentally ob-

tained patterns for the EOE-

reaction when ferrocyanide is in-

cluded. A typical labyrinth pattern.

Figure 8.4: Fronts in the experiment

propagate towards each other until

they reach a critical distance where

they stop.

A +Y

k

2
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�2

X (M2)

2Y + X
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3

�! 3Y (M3 )

X

k

4

�! (M4)
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A short comparison with the four variable model (reaction steps N1 � N5) shows

that

1. The two bimolecular reaction steps N3 and N4 are now replaced by

the autocatalytic threemolecular reaction step M3 which is a reasonable

approximation when the reaction constants k

3

and k

4

in N3; N4 are high

(the experimental values are k

3

= 7:5x10

4

m

�1

s

�1

; k

4

= 2:3x10

9

m

�1

s

�1

.

2. The step M4 is new, and introduces an asymmetry in the system.

3. We expect A to be in excess, and therefore it is set to a constant which

is di�erent from expressing it as a hidden variable. The step N2 is then

also accounted for in the revese step of M2. This simpli�cation is the

major di�erence and needs maybe some more investigation in order to be

justi�ed completely [40].

With this mechanism the rate law becomes:

dX

dt

= �k

3

XY

2

+ k

2

AY � (k

�2

+ k

4

)X +D

x

r

2

�

X
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(8.7)
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= k

3

XY

2

� (k

5

+ k

2

A)Y + k

�2

X + k

1

+D

y

r

2

�

Y

where we have included di�usion. After an appropriate non-dimensionalization (see

appendix B) we get:

du

d�

= c

h

�uv
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We will now try to make a linear stability analysis in order to �nd the di�erent

properties of this system. We will �nd the bistable region and the line of Turing

bifurcation.

8.3.1 The Homogeneous System without Di�usion

In the following approach we will limit ourself to the case where c = 1. The

steady states of the system are then for the �rst component given by

u

0

=

av

0

v

2

0

+ 1 + b

(8.10)

and the steady states of the second component are given by the cubic polynomial

v

3

0

� Fv

2

0

+ (1 + b+ ab)v

0

� F (1 + b) = 0 (8.11)

Descartes' rule of signs (appendix B) tells us that there is a possibility for three

positive real roots since the number of sign changes in the sequence of coe�cients is

three. Consequently, it should be possible to obtain three positive and real steady

states (u

0

; v

0

) for a right choice of the parameters a; b and F . A numerically obtained

example is given in �g.8.5.
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Figure 8.5: (v

s

; a)- graph showing bistability. When changing a back and forth, one

makes a hysteresis loop, since the middle line is an unstable steady state encapsulated

by two stable steady states. The other constants are: F = 7:65 and b = 1.

The Jacobian matrix evaluated at a steady state is:
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and for v

0

>

q

2(1+a)

a�1

we have:

J

0

=

 

� �

+ +

!

(8.13)

which is a (S2)-form, allowing Turing instabilities to occur.

8.3.2 The Saddle-node Bifurcation

The criteria for a saddle-node bifurcation; i.e. the emergence of bistability is

that the determinant of the jacobian goes from a positive to a negative value through

zero:

Det(J

0

) = v

2

0

+ 1 + b+ ab�

2abv

2

0

v

2

0

+ 1 + b

= 0 (8.14)

Evaluating this equation for real solutions, this condition can only be achieved when:

a � 8 +

8

b

(8.15)
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Figure 8.6: Phase-space plot of parameter F versus parameter a. Determines the

bistable region for b = 1. The point where the two curves in phase-space meet is

sometimes referred to as a cusp.

For b = 1 the hysteresis point is at a = 16, and for a > 16 we are in the bistable

area. A function for the width of the bistable area in terms of parameter F is for

the case of real solutions obtained by the explicit roots of the cubic polynomial (see

for instance [4]), leading to
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(8.16)

For a given value of the parameters a and b, the parameter F has to be within the

region shown in �g.8.6, determined by eq.(8.16) This determines the bistable region

in phase space.

8.3.3 Patterns in the Bistable Region

Here we want to analyse some pattern selection mechanisms, when simulating

the model with di�erent initial conditions such as small noise around the Turing-

destabilized branch, or di�erent kinds and strenght of perturbations. We will also try

to illustrate the front dynamics of the model. But from the position of parameters

we will restrict ourself to the case of �gure 8.5, and only analyse patterns that are

related to di�erent locations on this �gure, i.e the parameters b and F will be �xed.

In the pictures the white colour always corresponds to low pH, that is, to a high

concentration of v � H

+

.

A normal 2D-Turing pattern emerging solely from the unstable branch has been

shown in the previous chapter (�g. 7.4). When moving outwards to the border of

bistability, say to a = 17:04, we obtain again a structure for the unstable branch, see

�g. 8.7. But in this case, also a normal Turing bifurcation on the upper stable branch
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Figure 8.7: The pictures on the left hand side illustrate a Turing structure in 2D

(top) appearing spontaneously from the unstable branch, and the corresponding

pro�le plot (bottom) which is obtained by cutting through the middle of the grid.

The right hand side shows a Turing structure appearing spontaneously from the

upper stable branch. While the pattern from the unstable branch has an irregu-

lar labyrinthic structure, the pattern from the stable branch shows more "normal"

hexagonal symmetry as has been seen in most mono-stable Turing models. The

parameter values for both pictures are a = 17:04; b = 1; F = 7:65;

D

�

D

+

= 1:39, and

both are induced with noise.

has appeared. A structure of hexagonal symmetry may then emerge spontaneously

from this state.

The continuation of the stable stationary pattern from the normal Turing bifurcation

(�g. 8.7) outside the bistable area to a = 17:06, still gives rise to patterns (see �g.

8.8), and a transition from hexagons to stripes is observed. The continuation of

spatial structures towards the direction of marginal stability and further outside

the bistable domain, has also recently been observed by Pearson in the Gray-Scott

model. There the structures obtained emanate from a Turing instability on the upper

stable branch of an isola appearing between the Hopf and Saddle node bifurcation.

It is interesting to see the qualitative di�erences between structures emerging

out of the upper branch and structures emerging out of the unstable middle branch
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Figure 8.8: Here the left most �gure shows a structure from the unstable branch

continued outside the bistable domain (a = 17:07). In comparison with the previous

�gure, the lower stable branch (the only existing) is more dominant (the black region

occupies more space). The �gure in the middle is a continuation of the pattern from

the stable branch (middle a = 17:06). The hexagonal symmetry dissolves into

stripes. For a = 17:07 this e�ect is even more clear (in the �gure on the right hand

side).

(both outside the bistable domain). For a = 17:07 the �gures in �g. 8.8 are obtained.

In this parameter region only the lower steady state exists (black color) and becomes

more dominant. The pattern from the middle unstable branch (most left) also has

an other mode selection and is still more irregular.

8.3.4 Front Dynamics and Morphological Instabilities

In order to illustrate the dynamics of fronts in this system, the following sim-

ulations are performed. At the initial time, the system is prepared in the lower

homogeneous steady state. A front with a concentration in between the middle and

upper branch is then induced in the middle of the grid where one third of the front

is displaced one pixel, as seen from the �rst left picture in �g. 8.9. For the chosen

parameter values (a = 17) the upper state is dominant. This results in a invasion

of the front, which �nally �lls the whole space (the �nal picture is not shown here).

From the pro�le plot one can see that the concentration at the edge of the front is

larger than behind. With a one pixel displacement of a part of the front, there is no

signi�cant morphological instability.

A di�erent scenario appears when two fronts are induced for instance at the

border on the lower boundary of �g. 8.10. Along the x-axis these fronts move

towards each other, but the substrate v is de
ected from the region between the two

approaching fronts. This repulsion implies the slowing down of the progression of

these waves. At a critical distance, the level of v is su�ciently low to completely block

the propagation and thus give give rise to a stable domain of the initial lower state

bounded by the other state. It is indeed known that nonvariational bistable models
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Figure 8.9: The upper steady state invades the whole space with a = 17.

may exhibit intrinsic localized structures which coexist in the spatial juxtaposition

of the various stable states [30]. As the front invades the teritory of the lower state

in the y-direction, it traces a furrow of this state in the domain of the other (see �g.

8.10).

The front undergoes a morphological instability when � =

D

�

D

+

is su�ciently

large. This instability occurs when the e�ective di�usion coe�cient �(�) appearing

in the eikonal expression [41] of the front velocity v(k) goes to zero, i.e. when

�(�) = 0), where

v(k) = v

n

� �k (8.17)

and v

n

is the velocity of the planar front and k the curvature, which is positive for

convex segments in the direction of propagation. As shown in �g. 8.10 � < 0 for

� = 1:39. In agreement with eq. 8.17 the convex segments of the front move more

slowly than the planar front, whereas the concave parts near the tip of the localized

structure have a larger velocity. As the front continues to progress, the appearing

convex segments act as nucleating centers for the formation of new stripes of the

initial state embedded in the other one.

This simulation suggests that the formation of large amplitude labyrinthine

structures results from the combination of two e�ects:

1. The morphological instability of the front connecting the two stable states.

2. The existence of stable motionless solitary waves of the lower state.

Both e�ects are favored by a large value of the ratio of the di�usion coe�cients.

There is indeed a striking resemblence in the patterns obtained by the above simu-

lations and the experimentally obtained patterns in �g. 8.3 and 8.4. This strongly

suggests that the outlined mechanism, which is new in the context of Turing struc-

tures, gives an important contribution to the theoretical understanding of experi-

mentally observed spatial structures.
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Figure 8.10: The evolution of two fronts in 2D, induced at the lower boundary of

the grid. The upper left �gure shows the initial state and the succesive �gures on

the right and in the lower row illustrate the emerging mophological instabilities and

the remaining stable domains of the initial state (black) at di�erent times.

8.3.5 Localized Structures

When a front stops to move, the structure becomes stationary and the pattern

is called a localized structure. In the simulations of the reduced EOE-model this

e�ect seems to be very common. It might be due to the fact that the Turing desta-

bilized branch, which in our investigations is the middle homogeneously unstable

branch, lies in between two stable and Turing stable branches that emerged out of

the saddle node, and not because of any subcritical Turing bifurcation. The front

velocity approaches zero as some non-adiabatic e�ects start to have in
uence on the

dynamics. This e�ect is called intrinsic pinning. The weakly nonlinear theory of

amplitude equations does not contain any explanation of the pinning e�ect.

A typical localized structure is shown in �g. 8.11. The pattern is started at

the unstable middle branch and there was made a perturbation at one pixel in the

middle of the grid. The evolution in time results in the successive development of

concentric rings with a de�nite wavelenght. The number of rings depend on the size

of perturbation. If the perturbation is small the e�ect is small and the number of

rings is small, and if the perturbation is large, the concentric fronts which develop

out can �ll the whole space.

The same scenario appears when the simulation is initiated at for instance the
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Figure 8.11: A localized structure which is initiated by a perturbation in the middle

of the grid. The (more or less) concentric rings a stable and do not break up.

The number of rings depends on the size of the perturbation. The parameters

are: a = 17; b = 1; F = 7:65;D

1

= 0:005;D

2

= 0:0036 and the initial state is

u

0

= 5:1251545; v

0

= 2:5248455.

lower stable branch, and the perturbation in the middle of the grid hits the region

between the two higher states. Then the spatially unstable modes again create stable

succesive rings of the lower vs. higher state, and the �nal pattern is the same as

�g. 8.11. As it is the case of the one-dimensional simulations in chapter 4, or even

more, it is very important to note the crucial dependence of the initial conditions

and the size of the perturbation. Together with the intrinsic wavelenght chosen by

the system, the �nal pinned structure relies fundamentally on these aspects. In this

context one can imagine that it is possible to obtain an inde�nite number of di�erent

pattern which all are stabilized by the e�ects discussed above. See �g. 8.12.
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Figure 8.12: Self portrait. An intrinsic piece of art, started with appropriate initial

perturbations. The structure is stable and the parameters are as before.
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Appendix A

Ginzburg-Landau Parameters

for the Selkov Model

Here we will shortly outline how to derive the parameters for the Ginzburg-

Landau equation for a speci�c example. We want to derive a small amplitude equa-

tion near a Hopf bifurcation point for the Selkov model, and determine whether it is

a super- or a subcritical Hopf bifurcation. The way to progress is similar as in [42],

wherein references and the theoretical background is to be found.

We express the reaction-di�usion equation in terms of u(r; t) and the deviation

from the uniform steady state as

@u

@t

= (L+Dr

2

)u+Muu+Nuuu+ :::: (A.1)

where L is the Jacobian matrix and M and N are tensors whose ith components

are given as

(Muu)
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; (A.2)

(Nuuu)
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(A.3)

We can de�ne a small positive parameter � by �

2

� = �, where � is equal to the

sign of � and � is regarded as a measure for the amplitude to lower order. We also

introduce a scaled time � by � = �

2

t and a scaled space coordinate s by s = �r. The

time and space di�erentiations are thus transformed to

d

dt

!

@

@t

+ �

2

@

@�

; (A.4)

r! �r

s

(A.5)

Together with the transformations (A.4, A.5) and the expansion coe�cients

91
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�N

1
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4
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2
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we can substitute all together in (A.1) and obtain a set of balance equations in the

form

�

@

@t

� L

0

�

u

v

= B

v

; v = 1; 2; ::::: (A.9)
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etc. Using the solvability condition (see ref. [42]) in the form

U

�

B

(1)

v

(�; s) = 0 (A.13)

one can recursively obtain solutions of u

n

as a function of u

n�1

; :::u

1

starting at

n = 1. The neutral solution for u

1

is

u

1

(t; �; s) = A(�; s)Ue

i!

0

t

+ c:c: (A.14)

where c:c stands for the complex conjugated. For v = 3 one obtains the Ginzburg-

Landau equation

@A
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where
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Let us turn to an explicit example. The scaled Selkov model consists of the two

coupled di�erential equations

dx

dt

= 1� xy




(A.19)

dy

dt

= �(xy




� y)
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The steady state is x = 1; y = 1 and thus the Jacobian of the reference state is

J

s

=

 

�1 �


� �(
 � 1)

!

(A.20)

We want to expand around the vicinity of the Hopf-bifurcation point, and the

appropriate parameter is chosen to be

�

c

=

1


 � 1

(A.21)

which is evaluated for Tr = 0. Inserting this in A.20 results in the matrix

L

0

=

 

�1 �


1


�1

1

!

(A.22)

If we call our expansion parameter � and expand our bifurcation parameter � at

criticality as � = �

c

+ ��

c

and also the matrix L as L = L

0

+ �L

1

we obtain after

di�erentiation with �

L

1

=

 

0 0

1


�1

1

!

(A.23)

The right (U) and left (U

�

) eigenvectors of L

0

are given as

U =

 

�
 + 1 + i
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1
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(A.24)
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These are normalized as U

�

U =

�

U

�

�

U = 1 ,where

�

U is the complex conjugated of

U. The eigenvalues � are also expanded as a power series
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2
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2

+ :: (A.26)

and the �rst two are then expressed as
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Other important quantities for the calculation of d and g are
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Thus, d and g are given as
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Figure A.1: Re(g) as a function of 
.

g changes sign at 
 ' 2:255 
 = 5

and 
 ' 6:7. In these points the

parameters of the Ginzburg-Landau

equation are not valid.

gam~
12108642

0

4

2

0

-2

-4

Figure A.2: c2 = Im(g)=Reg as a

function of 
. At the vertical lines

the parameter c2 diverges and one

needs higher order terms for a valid

the description of the amplitude.

From �gure A.1 we see that the system has a subcritical Hopf-bifurcation for


 < 2:255 : : : which is given by the condition g < 0. A supercritical Hopf-bifurcation

exists for 2:255 : : : < 
 < 5, and at 
 = 5 g diverges. At 
 = 6:7 : : : there is again

a transition from sub- to supercriticality. At the transition point between a sub-

and supercritical bifurcation, the saturated amplitude diverges and therefore has no

physical meaning. This can be explained by the fact that in this case one needs

to include dominant higher order terms in the Ginzburg-Landau equation. The

parameters in the Ginzburg-Landau equation are also only valid for cases of small

amplitude oscillations, and hence in supercritical regions.
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B.1 Scaling of the Reduced EOE-Model

In most textbooks the scaling of a reaction di�usion model is already per-

formed, whereas the veri�cation of the resultant equations is leaved to the student

by reinserting the parameters in the scaled equations. This is of course not the

correct procedure and we therefore here sortly want to derive the scaled equations

for the reduced nonoscillatory EOE-model from section (8.3). By doing so one sees

that there are many di�erent equally good scaling choices for the parameters in the

model. Our starting point is equation (8.8)
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and via the chain rule we get
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Now we can try to start inserting for the y-component
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As a start we can set t
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and remove all the constants in front of the cubic

term
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and setting y
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the equation becomes
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where the last constants can be set to
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leading to
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Before we determine �

2

0

we turn to the x-component. Here the equation reads
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We set
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which lead to
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we �nally obtain the scaled equations
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B.2 The Routh-Hurwitz Condition

When we perform linear stability analysis of ODE's emerging from reaction

kinetics, we usually need to determine the roots of a polynomial. If the system is

of n'th order, the characteristic polynomial associated to the eigenvalues � has the

general form

P (�) = �

n

+ a

1

�

n�1

+ ::::+ a

n

= 0 (B.24)

where the coe�cients a

i

; i = 1; 2; :::; n are real. We also assume that a

n

6= 0, since

otherwise � = 0 would be a solution and the order of the polynomial would then

decrease by one. Now we want to require the conditions on the a

i

such that the

roots of P (�) have Re� < 0. The necessary and su�cient conditions for this to hold

are the Routh-Hurwitz conditions. They read:
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If we for instance have a cubic polynomial
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the conditions for Re(�) < 0 are

a
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> 0; a
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> 0; a

1
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3
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B.3 Descartes' Rule of Signs

Consider the polynomial (B.24) and take a

n

> 0. If N is the number of sign

changes in the sequence of coe�cients a

n

; a

n�1

; :::; 0 Descartes' rule of signs says

that there are at most N roots which are real and positive, and further, that there

are either N or N � 2 or N � 4 or... real positive roots. That means, if there for

instance are two sign changes in the sequence of coe�cients in a polynomial, then

there are either 2 or 0 real positive roots.
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Publications

Early Biological Morphogenesis and Nonlinear Dynamics

Hunding, A., Engelhardt, R.

Submitted for publication.

A New Pattern Forming Mechanism in Bistable Chemical Systems

Engelhardt, R., Dewel, G., M�etens, S., Borckmans, P.

Paper is still in editorial process.

Pattern Formation in Bistable Chemical Systems

Dewel, G., Engelhardt, R., M�etens, S., Borckmans, P.

To appear in the proceedings of the IMACS third International Conference

Copenhagen. August (1994), Copenhagen.
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