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We introduce a model of evolution on a ¢tness landscape possessing a tunable degree of neutrality. The
model allows us to study the general properties of molecular species undergoing neutral evolution. We
¢nd that a number of phenomena seen in RNA sequence-structure maps are present also in our general
model. Examples are the occurrence of c̀ommon' structures that occupy a fraction of the genotype space
which tends to unity as the length of the genotype increases, and the formation of percolating neutral
networks that cover the genotype space in such a way that a member of such a network can be found
within a small radius of any point in the space. We also describe a number of new phenomena that
appear to be general properties of systems possessing selective neutrality. In particular, we show that the
maximum ¢tness attained during the adaptive walk of a population evolving on such a ¢tness landscape
increases with increasing degree of neutrality, and is directly related to the ¢tness of the most ¢t
percolating network.
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1. INTRODUCTION

Biological molecules such as proteins and RNAs undergo
evolution just as organisms do, selected for their ability to
perform certain functions by the reproductive success
which that ability imparts to their hosts. It is believed
that many mutations of a molecule are evolutionarily
neutral in the sense that they do not change the ¢tness of
the molecule to perform the function for which it has
been selected. We have many examples of proteins that
appear to possess approximately the same conformation
and to perform the same function in di¡erent species, but
which have di¡erent sequences. Such proteins may di¡er
only by a single amino acid or may have whole regions
that have been substituted or inserted, or they may even
be so di¡erent as to appear completely unrelated. A
mutation is said to be neutral if it changes a molecule into
one of these functional equivalents, leaving the viability
of its host unchanged. This idea was ¢rst explored in
detail by Kimura (1955, 1983).
In fact, as Ohta (1972) has pointed out, it is not

necessary that the ¢tness of a molecule remains precisely
the same under a given mutation for that mutation to be
considered neutral. In populations of small size, genetic
drift becomes the more important factor and small
di¡erences in ¢tness can be neglected by comparison. In
e¡ect, drift places a limit on the resolution with which
selection can detect changes of ¢tness, so that small ¢tness
changes are e¡ectively, if not precisely, neutral.
It is possible that the concept of selective neutrality can

also be applied to the evolution of entire organisms.
Certainly there are changes possible in an organism's
genome which have no immediate e¡ect on its reproductive

success, or which produce an e¡ect su¤ciently small that
selection cannot detect it in a given population. In this
paper we will primarily use the language of molecular
evolution, but the reader should bear in mind that the
ideas described may have wider applicability.
Despite the long history of the idea, many aspects of

neutral evolution are still not well understood. In
particular, we have very little idea of the general
behaviours that can be expected of systems (molecules or
organisms) with a signi¢cant degree of evolutionary
neutrality. The primary reason for this gap in our
understanding is that, despite many decades of hard
work, we still have a rather poor idea of the way in which
genomic sequences map onto molecular structures and
hence onto a ¢tness measure. In the case of entire
organisms the equivalent problem is that of calculating
the genotype^phenotype mapping, which is even less
well understood. One simple case in which neutral
evolution has been investigated in some detail is that of
RNA structure (Schuster et al. 1994; Gru« ner et al. 1996a,b;
Huynen et al. 1996; Reidys et al. 1997), although
calculations so far are limited to secondary structures,
and even these cannot be calculated with any reliability,
so that these studies should be taken more as a qualitative
guide to the behaviour of systems undergoing neutral
evolution than an accurate representation of the real
world. The trouble with this approach, however, is that
RNAs are not a su¤ciently general model that the results
gained from their study can be applied to other systems,
such as protein evolution or the evolution of whole
organisms.
At the other extreme, studies have been performed of

extremely simple mathematical models of neutral
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evolution in the context of genetic algorithms (Pru« gel-
Bennett & Shapiro 1994; Mitchell 1996). An example is the
`Royal Road' genetic algorithm studied by van Nimwegen
et al. (1997, 1998), in which individuals' ¢tness is a sum of
contributions from a number of genes, but each gene only
makes a contribution if it has one particular c̀orrect' value.
(All other values make zero contribution.) Such models
possess a high degree of evolutionary neutrality, while at
the same time being simple enough to yield to analytic
methods. Like RNA secondary structures, these models
have given us some insight into the type of e¡ects we may
expect neutral evolution to produce, but, like RNAs, they
are not su¤ciently general to be sure that these insights
apply to other systems as well.
In this paper, therefore, we propose a new mathematical

model of neutral evolution. This model is an abstract
model of a genotype-to-¢tness map in the spirit of the
Royal Road model.This approach allows us to sidestep the
problems of incorporating the chemistry of real molecules
in our calculations and to investigate the properties of the
system more quickly and in greater detail than is possible
with, for example, RNA structure calculations. In
addition, the model is more general than either the Royal
Road ¢tness function or the RNA sequence-structure maps
of Huynen et al. (1996) and Gru« ner et al. (1996a). In fact, it
possesses regimes in which it mimics the behaviour of both
of these systems, as well as protein- and organism-like
regimes. Because the behaviours of our model cover such a
wide range of possibilities, it seems reasonable to
conjecture that generic features of the model which span
all of these regimes may be common to most systems
possessing selective neutrality. This is the power of our
model, and these general results are the results that we will
concentrate on in this paper; we believe that the generic
behaviours of our model should be visible in the evolution
of real systems such as proteins, which are, as yet, beyond
our ability to study directly.
In } 2 we introduce our landscape model of neutral

evolution. In } 3 we discuss its properties and compare
these with previous results for other systems undergoing
neutral evolution. In } 4 we discuss the implications of
our results for evolving molecular species. In } 5 we give
our conclusions.

2. THE MODEL

Selective neutrality arises as a result of the many-to-
one nature of the sequence-structure or genotype-pheno-
type maps found in biological systems. Many protein
sequences, for example, map onto the same tertiary
structure, and as the ¢tness is primarily a function of
structure, such sequences possess (at least approximately)
the same ¢tness (Tacker et al. 1996). We wish to construct
a model of this phenomenon without resorting to actual
calculations of the structure of any particular class of
molecules. Our approach is to employ a `¢tness landscape'
model of the type ¢rst proposed by Wright (1967, 1982),
which maps sequence (or genotype) directly to ¢tness.
Structures (or phenotypes) appear in our model as
contiguous sets or `neutral networks' of sequences posses-
sing the same ¢tness.
Our model is a generalization of the NK model

introduced by Kau¡man & Johnsen (1991). Consider a

sequence of N loci, which correspond to the nucleotides
in an RNA or to amino acids in the case of a protein. At
each locus i we have a value xi drawn from an
appropriate alphabet, such as {A,C,G,U} for RNAs, or
the set of 20 amino acids in the case of proteins. We
denote the size of the alphabet by A. Each locus interacts
with a number K of other `neighbour' loci, which may
be chosen at random or in any other way we wish.
(Kau¡man refers to these interactions as epistatic inter-
actions, although this nomenclature is strictly only
appropriate to the case where we are modelling the
¢tness of whole organisms.) In the case of RNAs, bases
most often interact with one other base to form either a
Watson^Crick or a G-U pair. Some bases have both
pairing and tertiary interactions. Some, in the single-
stranded regions, have very little interaction with any
others. Thus a value of K � 1 might be approximately
correct for RNA. For proteins, which have more
complex types of interactions, a higher value of K may
be appropriate. Each locus i makes a contribution wi to
the ¢tness of the sequence, whose magnitude depends on
the value xi at that locus and also on the values at each
of the K neighbouring loci. There are AK�1 possible sets
of values for the K � 1 loci in this neighbourhood, and
hence AK�1 possible values of wi. Following Kau¡man &
Johnsen (1991) we choose this set of values at random.
However, Kau¡man & Johnsen chose the values to be
random real numbers in the interval 04 wi51. We
by contrast choose them to be integers in the range
04 wi5F. Thus if F � 2, for example, each contribu-
tion wi is either zero or one. Now we de¢ne the ¢tness
W of the entire sequence to be proportional to the sum
of the contributions at each locus:

W � 1
N(F ÿ 1)

X
i

wi. (1)

The ¢tness of all sequences thus falls in the range from
zero to one, and there are NF ÿN � 1 possible ¢tness
values in this range.
In the limit in which F !1, the probability that two

sequences will possess the same ¢tness becomes vanish-
ingly small, and our model therefore possesses no
neutrality and is in fact exactly equivalent to the NK
model. However, when F is ¢nite, the probability of two
sequences possessing the same ¢tness is ¢nite, so that the
model possesses neutrality to a degree that increases as F
decreases. Neutrality is greatest when F takes the smallest
possible value of 2. Two sequences with the same ¢tness
may be equivalent either to molecules that fold into the
same conformation and perform the same function, or to
molecules with di¡erent conformations but approximately
the same contribution to the reproductive success of the
host organism. The ruggedness of the landscape is
controlled by the parameter K, and is largest when K
takes the maximal value of N ÿ 1 (Kau¡man & Johnsen
1991; Weinberger 1991). In the next section, we investigate
the properties of the landscapes generated by our model,
and show that with the right choice of parameters they
can be used to mimic real biological systems, such as
RNAs.
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3. EVOLUTION ON NEUTRAL LANDSCAPES

The topology of a ¢tness landscape depends on the
types of mutation allowed to molecules evolving on it. In
biological evolution, point mutationsömutations of the
value at a single locusöare the most common. In this
case, a neutral network is de¢ned to be a set of sequences
that all possess the same ¢tness and that are connected
together via such point mutations. In the molecular case,
we assume that closely similar sequences have the same
¢tness because they fold into the same conformation, so
that these neutral networks correspond to (tertiary)
structures. In the organismal case, they correspond to
phenotypes.
The model described in the last section possesses

neutral networks of exactly this type. The total ¢tness W
in the model ranges from zero to one, but the greatest
number of sequences have ¢tness close to W � 0:5. (In
the extreme case where K � N ÿ 1 the distribution of W
is binomial. When K5N ÿ 1 it is approximately but not
exactly so. Examples of these distributions are shown in
¢gure 1a.) We would therefore expect the largest neutral
networks to be those with ¢tness close to W � 0:5, and
this is indeed what we ¢nd in practice.
Typically, there are a large number of small neutral

networks and a small number of large ones. In ¢gure 1 we
show histograms of the sizes of the neutral networks for
N � 20 and various values of K. For the RNA-like case
K � 1, the histogram appears to be convex, indicating a
distribution that falls o¡ faster than a power law. The
same behaviour has been seen in RNA studies by Gru« ner
et al. (1996a). As K increases the distribution £attens, and
by the time we reach K � 5 it is markedly concave. Thus
the behaviour seen in RNAs is not in this case generic.
For some intermediate value of K close to K � 2, the
distribution appears to be power law in form, perhaps
indicating the divergence of some scale parameter
governing the distribution, in a manner familiar from the
study of critical phenomena (Binney et al. 1992).

We ¢nd that the total number of neutral networks SN
grows exponentially as aN with sequence length. In ¢gure
1b we show the number of networks in our model for
K � 1, both for two-letter {G,C} alphabets, and for a
four-letter {A,C,G,U} alphabet. We ¢nd that a � 1:5 for
the A � 2 case, and a � 2:3 for the A � 4 case. Interest-
ingly, Stadler and co-workers (Gru« ner et al. 1996a,b;
Stadler & Haslinger 1998) have studied the same
distributions for RNA sequences using the full secondary-
structure calculation and also ¢nd an exponential
increase in the number of structures with sequence
length, with values of a � 1:6 and a � 2:35 for the two-
and four-letter cases, respectively. This suggests that this
behaviour is more general than the speci¢c secondary-
structure map employed in the Stadler calculations.
The largest neutral networks on our landscapes

percolate, which is to say, they ¢ll the sequence space
roughly uniformly, in such a way that no sequence is
more than a certain distance away from a member of the
percolating network. Determining which networks are
percolating is not an easy task, however, so Gru« ner et al.
(1996a) introduced instead the idea of a c̀ommon'
network, which is one that contains greater than the
average number of sequences. In our model we ¢nd that
the common networks form a small fraction of the total
number of networks, that fraction decreasing exponen-
tially as N increases, as shown in the inset to ¢gure 2.
The same result is found in RNAs (Gru« ner et al. 1996a).
In the main frame of ¢gure 2 we show numerical

results for the fraction of sequences that fall in the
common networks as a function of N. As the ¢gure
shows, this fraction increases with sequence length,
tending to one in the limit of large N. Even though the
common networks form a smaller and smaller fraction of
all networks as N becomes large, they nonetheless cover
more and more of the sequence space. These results have
interesting evolutionary implications: they imply that as
sequences become longer, a larger and larger majority of
structures (the small networks) are vanishingly unlikely
to occur through natural selection. Evolution can only
¢nd the smaller and smaller fraction of c̀ommon'
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Figure 1. The frequency of occurrence of neutral networks as
a function of size for a landscape with N�20, A�2, F�2,
and K�1 (circles), K�2 (squares) and K�5 (diamonds).
Inset (a): the frequency of occurrence of sequences as a func-
tion of ¢tness for N�20, A�2, F�2, and K�19 (solid line),
K�0 (dotted line). Inset (b): the number of neutral networks
as a function of N for K�1, F�2, and A�2 (circles), A�4
(squares).

Figure 2. The fraction of sequences that fall in common
networks as a function of N for a landscape with A�2, F�2,
and K�2 (circles), K�4 (squares) and K�6 (diamonds).
Inset: the number of common networks as a fraction of the
total number of networks for the same landscapes.



structures. Similar behaviour has been found in RNAs
and also in simple models of protein folding (Li et al.
1996). The results presented here suggest that the same
conclusions may hold for other systems undergoing
neutral evolution.
Next we have examined the dynamics of populations

evolving on our landscapes. In their studies with NK
landscapes, Kau¡man & Johnsen (1991) made a useful
approximation in representing evolving populations by a
single dominant sequence. This approximation is only
valid in the case in which the time-scale for mutation is
much longer than the time-scale on which selection acts.
For the moment we will assume this to be the case. A
`random hill-climber' is a population of this type,
represented by a single dominant strain, which tries
mutationsöpoint mutations in the present caseöuntil it
¢nds one with higher ¢tness than the current strain. In this
way the hill-climber performs an adaptive walk through
sequences of ever-increasing ¢tness until it reaches a local
¢tness optimum. To study neutral landscapes we modify
this strategy so that the hill-climber samples adjacent
sequences at random until it ¢nds one of ¢tness greater
than or the same as itself. Such a climber will move at
random on a neutral network until it ¢nds a mutation that
takes it to a network of higher ¢tness. In the upper curve of
¢gure 3 we show the average ¢tness attained by a hill-
climber over 100 simulations on our landscapes as a func-
tion of the neutrality parameter F. Recall that neutrality
increases with decreasing F. As the ¢gure shows, the
climber, on average, ¢nds higher ¢tness maxima for
higher degrees of neutrality. In other words, neutrality
helps the population to attain a greater ¢tness. This is
certainly an idea that has been entertained before in the
literature, but it is lent a new conviction when we see it
emerge in the behaviour of a general model such as this.
The lower curve on ¢gure 3 shows the ¢tness of the

most ¢t percolating network averaged over the same 100
landscapes. This curve follows quite closely the form of
the ¢tness of the local maxima found by the hill-climber.

Our explanation of this result is as follows. The climber
moves di¡usively on a neutral network until it ¢nds a
one-mutant neighbour that belongs to a network of
greater ¢tness, at which point it shifts to that network.
This process continues until it reaches a non-percolating
network, at which point it is con¢ned to the region occu-
pied by the network and can only get as high as the local
maximum within that region. Thus the highest ¢tness
attainable on a landscape with neutrality depends
directly on the highest ¢tness at which there are
percolating networks. The landscapes with the greatest
degree of neutrality also have the ¢ttest percolating
networks, which explains why higher ¢tnesses are
attained on landscapes with lower values of F.
The inset to ¢gure 3 shows the ¢tness of one of our hill-

climbers as a function of time, and we can clearly see the
jumps in this function where the climber ¢nds its way
onto a network of higher ¢tness. Similar jumps have been
seen, for example, in laboratory experiments on the
evolution of bacteria (Lenski & Travisano 1994). In the
periods between jumps the climber di¡uses around its
network, testing new mutations to ¢nd one of higher
¢tness. Van Nimwegen et al. (1997a) have dubbed these
periods èpochs'. (They also bear some similarity to the
palaeontological `punctuated equilibria' described by
Eldredge & Gould (1972), although there are many other
possible explanations for the intermittency seen in fossil
evolution.) The length of the epochs increases, on
average, with increasing ¢tness. This behaviour was also
seen in the Royal Road model, and occurs because as the
¢tness increases the number of structures with higher
¢tness still dwindles. The length of the epochs also
depends on the rate of di¡usion across the neutral
network and on the density of `points of contact' between
the network and other networks of higher ¢tness
(Kimura 1983).
Another interesting feature of the epochs seen in the

Royal Road is that the average ¢tness of a population
does not correspond exactly to the ¢tness of any of the
networks. Typically, the average ¢tness is a little lower
than the ¢tness of the dominant structure in the popula-
tion because deleterious mutants are constantly arising.
Even though these mutants are selected against, there are
at any time enough of them in the population to make a
noticeable di¡erence to the average ¢tness. We would
expect to see similar behaviour for populations evolving
on our landscapes. Because the number of possible
mutants with lower ¢tness than the dominant sequence
increases with increasing ¢tness, it is also possible to get
error threshold e¡ects with increasing ¢tness (Eigen &
Schuster 1979; Swetina & Schuster 1982). As the ¢tness
increases, there may come a point where the rate at
which deleterious mutants arise in the population exceeds
the rate at which they are suppressed by selection, and at
this point further improvement in ¢tness becomes impos-
sible. (This e¡ect has been studied in some detail for
some simple landscape models (Woodcock & Higgs
1996).) Thus there may be a dynamical limit on the
¢tness of populations, independent of the limit imposed
by the structure of the landscape discussed above. (This
is true of landscapes without neutral evolution too,
although the e¡ect is much more prominent in the
neutral case.)
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Figure 3. The maximum ¢tness attained by a random hill-
climber averaged over 100 simulations with N�20, K�4 and
A�2, as a function of the neutrality parameter F (circles).
The lower curve (squares) is the ¢tness of the most ¢t perco-
lating neutral network averaged over the same 100 runs.
Inset: the ¢tness of one of the hill-climbers in the simulation as
a function of time.



Simulations similar in spirit to ours have been
performed for populations of tRNAs by Fontana and co-
workers (Fontana & Schuster 1987; Huynen et al. 1996).
In these simulations the authors chose a `target structure'
which was arti¢cially selected for, and they also observed
epochs in the evolution as the population passed through
a succession of increasingly ¢t structures on its way to the
target.

4. DISCUSSION

The aim of this work is to study a model of neutral
evolution which is general enough to encompass
behaviours typical of other, more speci¢c models that
have been employed in the past. In this way we can
reproduce, in a general context, the results that have
been observed as special cases, and hence investigate the
extent to which these results are general properties of
¢tness landscapes possessing neutrality, or particular to
the systems in which they were ¢rst observed. In this
spirit, we put forward the following conjectures about
the ¢tness landscapes on which biological molecules
evolve, based on the results of the investigations outlined
in this paper.

1. The total number of possible structures increases expo-
nentially with sequence length. The exponential
constant of this increase appears to be approximately
numerically equal in the general model and the only
speci¢c case in which it has been studied, that of RNA
secondary structure.

2. There are a large number of structures that correspond
to a small number of sequences, and a small number of
structures that correspond to a large number of
sequences. The exact form of the histogram of structure
frequency, shown in ¢gure 1, varies depending on the
parameters of our model. However, for certain values
of the parameters it has a form similar to that seen in
RNA studies, whereas for others it appears to follow a
power law.

3. The c̀ommon' structuresöones that correspond to a
large number of sequencesöconstitute an exponen-
tially decreasing fraction of the total number as
sequence length increases. Conversely, however, they
cover a fraction of the sequence space which tends to
unity for long sequences.

4. At least on short time-scales, evolution is dominated
by the presence of neutrality. Neutrality helps
populations to ¢nd structures of high ¢tness without
having to cross ¢tness barriers. The highest ¢tness
that can be found in this way is closely related to the
¢tness of the ¢ttest percolating neutral network,
which itself depends on the amount of neutrality.
Therefore, for landscapes with a higher degree of
neutrality, the population typically reaches a higher
¢tness.

5. The ¢tness may be limited by error threshold e¡ects,
which are particularly severe for landscapes of this
type, because the size of the neutral networks (and
hence the ratio of numbers of bene¢cial and harmful
mutants) falls exponentially with increasing ¢tness.

6. Evolution proceeds in jumps separated by èpochs' in
which the ¢tness changes very little. An evolving

population uses these epochs to di¡use across the
current neutral network, allowing it to search a larger
portion of sequence space for bene¢cial mutations.

5. CONCLUSIONS

To conclude, we believe that by studying a simple and
general model of a neutral landscape, we should be able
to distinguish properties of speci¢c systems undergoing
neutral evolution from properties common to all such
systems. We have found a number of potential candidates
for inclusion in a list of such common properties. There
are many interesting lines of investigation which we have
not been able to pursue in this short work, including
details of the structure and size of the neutral networks
such as percolation measures and covering radii, details
of population dynamics on these networks including
entropy and other statistical measures of the structure of
such populations, calculations of the length of epochs, of
the maximum ¢tness obtainable on these landscapes, of
the e¡ects of the error threshold on maximum ¢tness,
and many e¡ects of the variation of the parameters of
the model, particularly the variation of the level of epis-
tasis K and the neutrality parameter F. Some of these
questions will be addressed in a forthcoming work.
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